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Abstract Hypovitaminosis D, defined by low serum levels of 25(OH)D, is a recognized worldwide public health
 problem. The most accepted definition considers that deficiency occurs with serum levels fall below 
12 ng/ml of 25(OH)D. Long term vitamin D deficiency results in decreased bone mineralization, secondary hy-
perparathyroidism, increased cortical bone loss (pathogenesis of osteoporosis and hip fractures), differentiation 
and division of various cell types, muscle strength, diabetes type 2, blood pressure, etc. Twin- and family-based 
studies indicate that genetic factors influence serum 25(OH)D levels. Genetic studies have shown single-nucleotide 
polymorphisms (SNPs) are linked to low serum 25(OH)D concentrations through changes in the activity of the 
enzymes of the 1α,25(OH)2D metabolic pathway. Carriers of high genetic risk scores would need a higher amount 
of vitamin D supplementation to achieve adequate serum 25(OH)D concentrations. Clinicians would not need to 
indicate studies to identify patients with vitamin D insufficiency of genetic origin. They should instruct their patients 
on their own care, to control the intake of vitamin D and the serum 25(OH)D levels until the latter are adequate. 
Overall, the literature reveals that the consequences of hypovitaminosis D on bone health are observed in old 
and infrequently in young subjects. A probable explanation for the latter is: if the rate of bone remodeling allows 
it, bone tissue has endogenous (genetics, hormones) and exogenous determinants (diet, physical activity) that 
may compensate the variables of bone health. The consequences of vitamin D deficit on bone health, has not 
been completely uncovered.  
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Resumen Determinantes genéticos de hipovitaminosis D. La hipovitaminosis D, definida por bajos niveles
 séricos de 25(OH)D (<12 ng/ml), es un reconocido problema de salud pública mundial. La deficiencia 
de vitamina D a largo plazo resulta en una disminución de la mineralización ósea, hiperparatiroidismo secundario, 
pérdida de hueso cortical (patogénesis de la osteoporosis y fracturas de cadera), diferenciación y división de 
varios tipos de células, fuerza muscular, diabetes tipo 2, presión arterial, etc. Estudios genéticos han demostrado 
que algunos “polimorfismos de un solo nucleótido” (SNP) están relacionados con bajas concentraciones séricas 
de 25(OH)D a través de reducción en la actividad de las enzimas implicadas en la síntesis de 1α,25(OH)2D. 
Los médicos no necesitan indicar un estudio genético para identificar a la insuficiencia de vitamina D de causa 
genética. Bastará con instruir a los pacientes sobre su propio cuidado y controlar la ingesta de vitamina D y los 
niveles séricos de 25(OH)D hasta que estos últimos sean adecuados. En general, la literatura revela que las 
consecuencias de la hipovitaminosis D sobre la salud ósea se observan en las personas añosas y con poca 
frecuencia en sujetos jóvenes. Una explicación probable para esta situación es: si la tasa de remodelación ósea 
lo permite, el tejido óseo tiene factores endógenos (genéticos, hormonales) y exógenos (dieta, actividad física) 
que pueden compensar las variables de la salud ósea. Las consecuencias del déficit de vitamina D sobre la 
salud ósea aún no se conocen completamente.
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Hypovitaminosis D, defined by the low serum levels 
of 25(OH)D, is a worldwide public health problem1. The 
definitions of the nutritional status of vitamin D have varied 
in recent years. At present, the most accepted definition 
is that that considers vitamin D3 deficiency when serum 
25(OH)D concentration is below 12 ng/ml2.

Vitamin D plays a primary physiological role in main-
taining extracellular calcium ion levels indispensable for 
the functioning of many metabolic processes and neuro-
muscular activity. The vitamin influences calcium levels 
primarily by controlling the absorption of calcium from 
the intestine, through direct effects on bone and through 
its effects on parathyroid hormone (PTH) secretion3,4.  
Long term vitamin D deficiency results in decreased 
bone mineralization, secondary hyperparathyroidism, 
and increased cortical bone loss. These factors that have 
been associated to the pathogenesis of osteoporosis 
and hip fractures5, 6. Vitamin D3 yield the biologically ac-
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tive 1α, 25(OH)2D, which acts through specific vitamin D 
receptors to regulate not only calcium metabolism, but 
also differentiation and division of various cell types7, 8. 
It has been reported that in addition to its pivotal role in 
calcium metabolism and bone mineralization, vitamin D 
may play a role in muscle strength9, 10, diabetes type 211, 
blood pressure12, etc.

Glossary

Allele: A variant form of a given gene. Sometimes, the 
presence of different alleles of the same gene can result 
in different observable phenotypic traits, such as different 
skin pigmentation. The addition of the letter A (adenine), C 
(cytosine) or T (thymine) before the term “allele”, indicates 
the different nucleotide.
SNPs: Single nucleotide polymorphisms (SNPs), are the 
most common type of genetic variation. For example, in 
a determined SNP the nucleotide cytosine (C) may be re-
placed with the nucleotide thymine (T), in a certain stretch 
of DNA. SNPs occur normally throughout a person’s DNA. 
They occur almost once in every 1,000 nucleotides on av-
erage, which means there are roughly 4 to 5 million SNPs 
in a person’s genome. These variations may be unique or 
occur in many individuals; scientists have found more than 
100 million SNPs in populations around the world. Most 
commonly, these variations are found in the DNA between 
genes. They can act as biological markers, helping scien-
tists locate genes that are associated with disease. Most 
SNPs have no effect on health or development. Some of 
these genetic differences, however, because they affect 
the enzymes of the metabolic pathway of vitamin D, have 

proven to be important in the determination of vitamin D 
deficiency.

Genes associated with the synthesis and 
physiological effects of vitamin D3

The Figure 1 displays two pools (systemic at the left, cellular 
at the right) of vitamin D3 synthesis and some physiologi-
cal effects. The genes involved are presented with cursive 
fonts. Their products (enzymes) are described below. 

DHCR7

The DHCR7 gene encodes instructions for making the 
enzyme 7-dehydrocholesterol reductase, responsible for 
the final step in cholesterol production in many types of 
cells. Specifically, this enzyme converts 7-dehydrocho-
lesterol to cholesterol13.

CYP27R1 

Cheng et al14 reported that this gene encodes vitamin D 
25-hydroxylase. This enzyme is a member of the cyto-
chrome P450 superfamily. The cytochrome P450 proteins 
are monooxygenases which catalyze many reactions 
involved in drug metabolism and synthesis of cholesterol, 
steroids and other lipids. The protein encoded by this gene 
localizes to the inner mitochondrial membrane where 
it hydroxylates 25-hydroxyvitamin D at the 1α position. 
This reaction synthesizes 1α, 25-(OH)2D, the active form 
of vitamin D3, which binds to the vitamin D receptor and 
regulates calcium metabolism. Thus this enzyme regu-

Fig. 1.– Two pools are displayed (systemic at the left, cellular at the right) of vitamin 
D synthesis and some physiological effects. The genes involved are presented 
with cursive fonts
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lates the level of biologically active vitamin D and plays 
an important role in calcium homeostasis. Mutations in 
this gene can result in vitamin D-dependent rickets type I. 

GC

The Gc protein15 (human group-specific component), is 
a well-known vitamin D-binding protein (VDBP) or Gc 
globulin, a 55 kDa serum protein secreted by the liver and 
belonging to the albumin superfamily. It has physiological 
functions that include involvement in vitamin D transport 
and storage, scavenging of extracellular G-actin, enhance-
ment of the chemotactic activity of C5 for neutrophils in 
inflammation and macrophage activation. 

CYP27B1

This gene13 encodes a member of the cytochrome P450 
superfamily of enzymes: 25(OH)D-1-alpha-hydroxylase. 
This enzyme is located in the proximal tubules of the kid-
ney and a variety of other tissues, including skin, immune 
cells, and bone.

Reports associating genes with low
levels of 25(OH)D

In northern latitudes (≥ 40° North), low vitamin D status 
in humans, measured as 25(OH)D concentrations, is 
common during winter months. This is because vitamin 
D cannot be synthesized in the skin due to the lack of 
solar ultraviolet B radiation (UVB) and because the aver-
age dietary intake of vitamin D is insufficient16. Twin- and 
family-based studies have shown that genetic factors may 
influence 25(OH)D concentrations17, 18 Several candidate 
gene studies have shown single-nucleotide polymor-
phisms (SNPs) to influence 25(OH)D concentrations19-24. 
These SNPs are located in the group-specific component 
also known as Gc globulin (GC) and in or near genes 
involved in vitamin D synthesis, activation or degradation. 
These findings indicate that 25(OH)D concentrations do 
not only depend on vitamin D intake and sun exposure, 
but also that genetic factors may help to identify individu-
als at risk of low vitamin D status. This paper reviews the 
genome-wide association studies (GWAS) of Wang et al25 
and Nissen et al26. 

Summary of Wang et al and
Nissen et al reports25, 26 

These two reports produced complementary informa-
tion. The Wang´s report contributed to elucidate the 
architecture of vitamin D insufficiency providing a better 
understanding of the regulation of the vitamin metabolism 
and identifying genetic variants useful for the identification 

of individuals at substantially elevated risk for vitamin D 
insufficiency25. The Nissen´s report assessed the effects 
of real-life use of vitamin D3-fortified bread and milk on 
25(OH)D serum concentrations in relation to common 
genetic variants of 25-hydroxylase and vitamin D binding 
protein (GC)26. 

Studies design

Wang´s studies were conducted only with white individu-
als of European descent. They measured plasma 25(OH)
D levels and performed the genome analysis on 16,125 
individuals of European descent drawn from five epide-
miological cohorts, plus five additional cohorts (n = 9,366) 
with genome-wide association data25. 

The Nissen´s study was a double blinded, random-
ized placebo-controlled intervention trial performed with 
apparently healthy Danish children and adults. A total of 
201 Danish families with dependent children, 4-60 years 
of age, randomly drawn from the Danish Civil Registration 
System, participated in the study. The study ensured a 
large age span and one weakness: some of the variables 
associated with 25(OH)D serum concentrations were 
quantified by self-reported questionnaire data. Families 
were randomly allocated to either vitamin D3-fortified bread 
and milk or non-fortified placebo bread and milk during a 
6-month winter period without sunlight exposure. At the 
end of the study, a total of 758 participants (no fortification 
group: n = 384; fortification group: n = 384) had complete 
questionnaire data, genotypes and 25(OH)D concentra-
tions measured26.

Variables investigated

The selected SNPs for replication had meta-analytic P-
values < 5 × 10-8 in the discovery samples. For further 
analysis, the selected SNPs were located at or near six 
pre-specified vitamin D pathway candidate genes: vitamin 
D receptor (VDR), 1-α-hydroxylase (CYP27B1), 25-hy-
droxylase (CYP2R1), 24-hydroxylase (CYP24A1), vitamin 
D binding protein (GC, VDBP), and 27- and 25-hydroxy-
lase (CYP27A1). The selected SNPs were assessed for 
25(OH)D association in the de novo replication samples, 
and were combined to produce P-values across these 
15 studies27. 

Nissen el al previously found that two SNPs in 25-hy-
droxylase and another two in vitamin D binding protein, 
predicted baseline 25(OH)D concentrations28. None of the 
four SNPs were in linked disequilibrium with each other, 
which means that they are not in random association 
of alleles at different loci in a given population. The main 
focus of this study was set on the influence of these four 
SNPs on 25(OH)D concentrations in participants allocated 
to either vitamin D-fortified bread and milk or non-fortified 
bread and milk during winter 27.
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Results

The data obtained in Wangs´ study established a role for 
common genetic variants in the regulation of circulating 
25(OH)D levels25. Indeed, the presence of identified al-
leles at the confirmed loci improve the understanding of 
vitamin D homeostasis and may assist in the identification 
of a subgroup of Caucasians at risk for vitamin D insuf-
ficiency of genetic origin. The existence of these loci in 
a given subject more than double the odds of vitamin D 
insufficiency occurrence. Measurements of serum 25(OH)
D concentrations were conducted by isotope dilution liquid 
chromatography tandem mass spectrometry (LC–MS/
MS). The cut-off value of 25(OH)D > 20 µg/ml defined the 
requirement for optimal bone health for the majority of the 
population, and the cut-off value <12 ng/ml defined the 
25(OH)D concentration at which adverse effects on bone 
health may be expected30.

 The contribution of vitamin D from intakes of vitamin 
D3-fortified bread and milk was calculated based on the 
self-reported consumption frequencies, amount and the 
measured vitamin D3 contents in the fortified products (5.2 
± 0.3 µg/100 g in wheat bread, 4.3 ± 0.3 µg/100 g in rye 
bread and 0.38 µg/100 ml in milk).

Nissen et al. demonstrated that carriers with accu-
mulated risk alleles (high genetic risk score, GRS) of the 
SNPs of 25-hydroxylase and vitamin D binding protein are 
more prone to be vitamin D deficient compared to carriers 
of a low GRS (Table 1)26. Carriers of high GRS require a 
greater amount of vitamin D supplementation to achieve 
adequate 25(OH)D serum levels. The results strongly in-
dicated that clinicians would not need to indicate a genetic 

study to their patients with vitamin D insufficiency. They 
will have to instruct their patients and control the intake 
of vitamin D and the serum 25(OH)D levels until the latter 
are adequate.

Vitamin D safety

Serum concentrations of 25(OH)D up to 100 ng/ml are 
regarded safe in the general population of children and 
adults, although in preterm neonates (a specific group), 
an increased risk of hypercalcemia has been reported 
at the 25(OH)D3 values > 80 ng/ml31. Hypercalcemia 
and hypercalciuria may occur when vitamin D intake is 
uncontrolled resulting in levels above 150-200 ng/ml2. 
According to reviewers of this subject, exceptional condi-
tions comprise individuals with vitamin D hypersensitiv-
ity, and also with idiopathic infantile hypercalcemia33,34, 
Williams-Beuren syndrome35, granulomatous diseases36 
and some lymphomas. No evidence exists until now that 
these values may be exceeded when appropriate doses 
of vitamin D are used.

Hypovitaminosis D in Argentina

The serum levels of 25(OH)D of assumedly healthy in-
habitants of Argentina have been the matter of additional 
nineteen reports, published since 198737-56. Only thirteen 
of those papers reported the number of subjects with 
insufficiency: a total of 2337 assumedly healthy persons, 
476 of which (20.4%) were in insufficiency. The incidence 
would have been higher if the figures of institutionalized 

TABLE 1.– Prevalence (%) of participants with < 12 µg/ml and >20µg/ml of 25(OH)
D concentrations at the end of the study, divided into not supplemented (No Supp) and 

supplemented (Supp) carriers of genotypes of CYP2R1 and GC genes

Genes SNPs   25(OH)D < 12 µg/ml  25(OH)D > 20 µg/ml
   No supp Supp No supp Supp

 rs10741657 AA 0 24 18 67
  GA 2 24 13 62
CYP2R1  GG 0 26 0 66
 rs10766197 GG 2 25 2 64
  AG 0 12 0 64
  AA 0 28 0 70
 rs4588 CC 0 22 0 66
  CA 0 28 0 64
GC  AA 2.6 16 3 50
 rs842999 GG 0 20 0 67
  GX 0 23 0 61
  XX 2 34 2 69

Supp: supplemented; No supp: not supplemented
The figures in this Table have been derived from the height of columns of Figure 2, Nissen, et al 26
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adults > 60 years or age and patients with cancer (nearly 
all of which were in insufficiency) were included (Table 2).

The report by Duran et al. on the Encuesta Nacional 
de Nutrición y Salud (2004-2005) describe the nutritional 
status of inhabitants under 5 years of age for our country 
as a whole and by regions57. In disagreement with the 
data of Table 2, the report states that vitamin D deficiency 
in children aged 6-23 months of age, in Patagonia, was 
2.8% (the report states that the data is based in actual 
measurements of serum 25(OH)D but no supporting data 
were included). It can be concluded that the deficiency of 
vitamin D is a definite health problem in Argentina. It would 
be desirable to have national surveys of similar quality as 
those existing in other countries like, The Danish National 
Health Service Register58, or The US National Health and 
Nutrition Examination Survey59. 

The effects of vitamin D deficit on
bone health

The consequences of hypovitaminosis D are easily ob-
served in children on account of their high rate of bone 
remodeling. In adults, the consequences of the deficit can 
be observed (without the aid of invasive measures) when 
the deficit has been chronic for many years. This observa-
tion poses the question: “why bone disease is not easily 
evident in short-term vitamin D deficiency in adults? An 
answer, probably adequate, could be: if the rate of bone 
remodeling allows it, bone tissue has endogenous (genetic, 
hormones) and exogenous determinants (diet, physical 
activity) that may compensate each other. The rate of bone 
remodeling, assessed by stature, decays continuously (with 
the exception of the pubertal spurt) along lifespan60.

The vitamin status, assessed by serum 25(OH)D, 
of young adults and the elderly has been reviewed by 
McKenna from 1971 to 199061. Hypovitaminosis D and 
related abnormalities in bone chemistry are reported in all 
elderly populations. The vitamin D status in young adults 

and the elderly varies widely with the country of residence 
(in McKenna´s report, studies were grouped according to 
geographic regions: North America; Scandinavia; Central 
and Western Europe). Adequate exposure to summer 
sunlight is the essential mean to obtain vitamin D, but 
oral intake augmented by both fortification and supple-
mentation of foods are necessary to maintain baseline 
stores. McKenna states that it seems likely that the elderly 
would benefit additionally from a daily supplement of 10 
micrograms of vitamin D and insist in that all countries 
should adopt a food fortification policy. Literature reports, 
however, indicate that vitamin D supplementation is not 
the only requirement to insure bone health.

Oliveri et al carried out a study to evaluate the possible 
influence of chronic winter vitamin D deficiency and higher 
winter parathyroid hormone (PTH) levels on bone mass in 
prepuberal children and young adults62. The study was car-
ried out in male and female Caucasian subjects, recruited 
from two cities of Argentina: Ushuaia (55° South), where 
the population is known to have low winter 25(OH)D levels 
and higher levels of PTH in winter than in summer, and 
Buenos Aires (34° South), where ultraviolet radiation and 
vitamin D nutritional status in the population are adequate 
all year round45. A total of 163 prepuberal children (8.9 ± 
0.7 years) and 234 young adults (22.9 ± 3.6 years) who 
had never received vitamin D supplementation were evalu-
ated. Similar results were obtained in age-sex matched 
groups in bone mineral content (BMC) and bone mineral 
density (BMD) of the ultradistal and distal radius. In conclu-
sion, peripheral BMD and BMC were similar in children and 
young adults from Ushuaia and Buenos Aires in spite of 
the previously documented difference between both areas 
regarding ultraviolet radiation and winter vitamin D status.

Callegari et al explored determinants of bone param-
eters in 326 young women, 16-25 years of age63. Serum 
25(OH)D was measured and bone health was assessed 
using dual-energy X-ray absorptiometry and peripheral 
quantitative computed tomography. Mean (± SD) serum 
25(OH)D was 28 ± 11 ng/ml and the prevalence of vitamin 

TABLE 2.– Number of vitamin D sufficient and insufficient subjects, of different categories, from studies 
done with Argentinian patients37-56

Categories Serum  Serum %
 25(OH)D 25(OH)D Insufficiency
 > 20 ng/ml < 20 ng/ml 

Puerperal 84 37 44.0
Neonates 102 36 35.2
Youngsters (< 18 years), both sexes 76 15 19.7
Adults, (> 18 years) both sexes 1599 388 24.2
Institutionalized adults (> 60 years), both sexes 60 63 95.2
Patients with cancer, both sexes 162 158 97.5
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D deficiency (serum 25(OH)D < 20 ng/ml) was 26%. Se-
rum 25(OH)D levels were not associated with the two bone 
health parameters evaluated. Most bone parameters were 
found positively associated with height and lean mass.

Shah et al aimed to determine whether bone fragility 
was present in 150 subjects, excluding persons aged 
younger than 20 years and patients with hypercalcemia 
(serum calcium > 2.6 mmol/l), and chronic kidney disease 
(glomerular filtration rate < 60 ml/min per 1.73 m2)64. Bone 
health was assessed measuring serum 25(OH)D, serum 
C-terminal telopeptide of type 1 collagen, serum procol-
lagen type 1 N-terminal propeptide, low areal bone mineral 
density (aBMD), distal radius microstructure deterioration 
and reduced matrix mineralization density (MMD). No as-
sociations were detected between serum 25(OH)D levels, 
aBMD, trabecular density, cortical porosity, or MMD.

On a sample of 1236 women aged ≥ 50 years in the 
baseline survey, Tamaki et al. collected information re-
garding fractures during a 15-year follow-up period65. The 
analysis included 1211 women without early menopause 
or diseases affecting bone metabolism. Over 15 years of 
follow up, 269 clinical (224 non-vertebral, 149 fragility) 
fracture events were confirmed. Incidence rates catego-
rized by 25(OH)D levels (<10, 10-20, 20-30, and ≥ 30 
ng/ml) indicated a significant divergence for any clinical 
fractures in 5 years and for non-vertebral fractures in 5, 
10, and 15 years.

It is well-established that prolonged and severe vitamin 
D deficiency leads to osteomalacia in adults. Sub-optimal 
vitamin D status has been reported in many populations 
but it is a particular concern in older people. Over extended 
periods of time, insufficiency has been associated with 
increased bone loss and secondary hyperparathyroid-
ism leading to increased fracture risk66. Sufficiency has 
been regarded as the point at which further intakes will 
have no additional beneficial effects on PTH and calcium 
metabolism in regard to bone health. However, the cut-
off values for sufficiency are still under debate. A study 
has demonstrated concentrations of > 30 ng/ml or higher, 
40-80 ng/ml, as optimal67. However, the formation of 
vitamin D from sunlight is a self-limiting reaction; thus 
preventing toxicity from sun exposure. The development 
of bone disease in later life is related to the attainment of 
maximum peak bone mass and the maintenance of bone 
mass in adulthood68.

The story of bone health as a consequence of vitamin 
D deficit is not, yet, completely uncovered69.  Research 
has shown that inadequate vitamin D intakes over long 
periods of time can lead to bone demineralization. These 
alterations result in the up-regulation of some components 
of the immune system as well as diminished function of 
others70, 71. Changes include decreased mature lympho-
cyte function, decreased replication of hematopoietic cells 
and an up-regulation in the production of pro-inflammatory 
cytokines such as interleukin 6 and tumor necrosis factor-

alpha. These pro-inflammatory cytokines have been asso-
ciated with increased bone metabolism and osteoporosis 
is often considered to be an inflammatory condition. The 
immunoregulatory mechanisms of vitamin D may thus 
modulate the effect of these cytokines on bone health and 
subsequent fracture risk.
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- - - -
Los mitos del rigor

Severamente se le advierte al chico eso de los 4˚ de temperatura, ceñudamente 
se le recuerda lo de los 45˚ y duramente se le castiga si llega a olvidarse de la des-
tilación, con el resultado que la víctima aprende de memoria la correcta definición 
de un kilo, pero ignora, en cuanto pasen algunos años (o al día siguiente), que en 
buen romance un kilo es lo que pesa un litro de agua. En la práctica, no solo llega 
a ignorar la rigurosa definición, sino que termina por no saber nada.
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