SUPERANTIGENOS: UNA PARTICULAR INTERACION ENTRE MICROORGANISMOS Y EL SISTEMA INMUNE

MARIA INES ANTUNEZ, RITA L. CARDONI

Instituto Nacional de Parasitología Dr. Mario Fatale Chabén, Buenos Aires

Resumen El descubrimiento de los superantígenos (SAGs) aportó nuevos conceptos en el estudio de las interacciones entre los microorganismos y el sistema inmune. Se trata de moléculas que, asociadas a las de Clase II del Complejo Mayor de Histocompatibilidad (CMH), se unen al dominio variable de la cadena β (Vβ) del receptor de antígenos (Ags) de los linfocitos T αβ (TCRαβ) que les confiere la especialidad de familia. Así, los SAGs son capaces de activar a un alto número de linfocitos T y de células portadoras de las moléculas de Clase II del CMH, generando una masiva liberación de linfocinas y mediadores inmunitarios que ha sido relacionada con sus efectos tóxicos. Los SAGs endógenos están codificados por los provirus de tumores murinos (Mtv) que se hallan integrados al genoma de los ratones. Los exógenos son producidos por bacterias y virus, siendo los mejor caracterizados los relacionados con las intoxicaciones alimentarias. Aun no se han hallado datos concluyentes en cuanto a la existencia de SAGs de parásitos y se requieren estudios más detallados para establecer su presencia y posible efecto en las infecciones parasitarias.

Palabras clave: superantígenos, linfocitos T, receptor de linfocitos T, complejo mayor de histocompatibilidad

La característica central del sistema inmune de los vertebrados es su capacidad de generar una respuesta específica ante agentes extraños sin agredir al propio organismo. Esta función es llevada a cabo principalmente por dos poblaciones de células, los linfocitos B y los T. Las células B reconocen a las moléculas extranjas a través de sus inmunoglobulinas de superficie y las T a través de su receptor1. Sin embargo, a diferencia de los linfocitos B, los T reconocen a los Ags que han sido procesados por las células presentadoras de Ags y expresados en la superficie de estas junto a las moléculas del CMH (Fig. 1). De esta manera los Ags son reconocidos por el receptor que con su doble especificidad, interacciona por un lado con las moléculas del CMH propio y por el otro con los péptidos extraños asociados a éste2. Los Ags asociados a las moléculas de Clase II o Clase I del CMH son reconocidos por los linfocitos T CD4 o CD8 respectivamente. Los correceptores CD4 y CD8 son moléculas que se unen a las zonas no polimórficas del CMH incrementando la avidez de la unión y que, junto con el complejo CD3, participan en la transmisión de las señales para la activación celular3.

El TCRαβ se expresa en el 90-95% de los linfocitos T periféricos y es un heterodímero constituido por una cadena α y una β, y cada monómero presenta una región variable y una constante4. La región variable de la cadena β contiene un dominio V (variable, Vβ), uno D (diversidad) y uno J (unión) y la de la cadena α uno V y uno J1. La región hipervariable del receptor, que es la que reconoce los Ags, está formada por la asociación de los dominios variables de las cadenas α y β. En las células germinales las familias de genes que codifican para el TCR se hallan divididas en segmentos distribuidos a lo lar-
Fig. 1.-Modelo propuesto para la interacción de un SAg con el TCR y el CMH. Estructura hipotética de la unión de un SAg al CMH y al TCR\(\alpha\beta\). El SAg puede ser endógeno (Mn-n or o vSAG) o exógeno. El SAg se une a un sitio diferente al de los Ags convencionales (Ag)\(^{28}\).

go del ADN cromosómico\(^1\). Estos segmentos sufren un reordenamiento similar al de las inmunoglobulinas, en el que los distintos dominios se unen para formar las regiones variables y constantes del TCR\(^1\). La variabilidad del receptor también aumenta por mecanismos tales como cambios en los codones de finalización, el agregado de nucleótidos independientes del templado en la región amino terminal, las variaciones en los marcos de lectura y la asociación de los monómeros. Se calcula que de esta manera es posible generar unas \(10^{15}\) moléculas diferentes\(^1\). Este sería entonces el repertorio hipotético de TCR\(\alpha\beta\) con que cuenta cada individuo para el reconocimiento de los Ags, incluyendo los propios. Para evitar la reactividad contra los Ags propios, el repertorio debe ser necesariamente acotado, hecho que se logra mediante la selección negativa de los clones de timocitos que han sido seleccionados positivamente. Estos mecanismos de tolerancia ocurren primaria y principalmente en el timo\(^5\) y se mantienen y refuerzan en la periferia\(^6\).

La selección positiva permite la sobrevida y expansión de las células que expresan el TCR con afinidad por las moléculas del CMH propio\(^7\)\(^8\), rescatándolas de la destrucción que sufren todos aquellos timocitos inmaduros que no las reconocen. El contexto del CMH propio es un requerimiento indispensable para la diferenciación y posterior proliferación de los linfocitos que fueron seleccionados positivamente por lo que se dice que estas células son restrictas\(^8\)\(^9\). La selección negativa lleva a la eliminación de los timocitos capaces de unirse a los Ags propios y a las moléculas del CMH\(^10\)\(^11\). En el timo, los mecanismos de selección negativa se llevan a cabo principalmente mediante la muerte celular programada o apoptosis\(^5\)\(^12\)\(^13\) y en menor medida por la transformación en células no reactivas o anérgicas\(^14\)\(^15\). Este último es el mecanismo más importante en el mantenimiento de la tolerancia en periferia\(^6\)\(^16\)\(^17\) donde la depleción clonal se observa en menor grado\(^18\)\(^19\)\(^20\)\(^21\). Como consecuencia de estos procesos se generan clones celulares maduros que no reaccionan frente a los Ags propios (tolerantes) y cuyo reconocimiento de los Ags extraños es restringido por el CMH\(^10\)\(^11\). Aun no se ha aclarado esta “paradoja inmunológica”, es decir cómo a través del mismo TCR pueden desencadenarse dos procesos opuestos como son la maduración y proliferación (selección positiva) y la eliminación (selección negativa) de clones celulares. Se han propuesto diferentes teorías para explicar este hecho y actualmente se considera que podría ser la consecuencia de diferencias de avidez entre el TCR y el péptido unido a las moléculas del CMH\(^22\). Una baja afinidad y/o un bajo número de receptores (menor avidez) favorecen la selección positiva, mientras que una alta afinidad y/o un alto número de receptores (alta avidez) desencadena la selección negativa\(^22\). Esto implica que la avidez necesaria para la selección positiva sería menor que la requerida para la selección negativa. Para la posterior activación de las células maduras, sería necesaria una avidez aun menor, asegurando así la alta especificidad requerida en este último estabón de la cadena. Teniendo en cuenta que una baja avidez incrementa la posibilidad de una reactividad cruzada, los clones seleccionados positivamente tienen un mayor número de potenciales ligandos, ampliando el espectro de Ags no propios con posibilidad de ser reconocidos. Por otro lado, la mayor avidez requerida para la selección negativa implicaría menos posibilidades de reacciones cruzadas, asegurando de esta manera una mayor especificidad y una menor probabilidad de reconocimiento e interacción con los Ags propios\(^22\).

En los últimos años el análisis de las cadenas VBJ del TCR mediante las técnicas de citometría de flujo con anticuerpos monoclonales y PCR (re-
acción de polimerasa en cadena) con sondas específicas, se ha convertido en una herramienta muy útil para el estudio de la selección del repertorio y sus alteraciones, incluyendo los causados por la presencia de SAgS, así como de la ontogenesis de los linfocitos T. La gran variabilidad genética y los estímulos ambientales de los individuos no endocríados generan variaciones en el repertorio de las cadenas Vβ, aun entre gemelos univitelinos. Esto dificulta la interpretación de los resultados obtenidos en humanos, por lo que vamos a referirnos principalmente a lo conocido de SAgS en el ratón.

**Antígenos no convencionales**

Los SAgS son moléculas que tienen la capacidad de estimular un alto número de linfocitos T ya que sólo interactuar con el dominio variable de las cadenas β del TCR. Los primeros indicios sobre su existencia aparecieron a principios de la década del setenta, cuando se observó que las células T de algunos ratones respondían ante células de bajo de ratones con el mismo CMH y se los denominó Mls (por "minor lymphocyte stimulators")25,26. Su efecto fue interpretado como diferencias menores de histocompatibilidad que muy pocos comprendían, por lo que se propuso que Mls podrían ser las siglas de "makes little sense,". Unos 20 años después se determinó que la reacción se debía a proteínas codificadas por provirus de tumores mamarios murinos (MtvS) que sólo han sido caracterizadas en ratones28. Los MtvS pertenecen a la familia de los retrovirus, es decir que se integran como provirus al genoma de los ratones, siendo transmitidos a la descendencia. De esta manera todas las cepas de ratones estudiadas contienen integrantes de los MtvS que codifican para los SAgS endógenos, denominados vSAG-n o Mtv-n orf y, en condiciones correctas de endocría, su repertorio es una característica más de una determinada cepa de ratón29,30. Estos SAgS son codificados por una región ORF (open reading frame) del LTR (long terminal repeat) en el extremo 3' de los provirus31. Los MtvS presentan una alta homología entre sí, sin

<table>
<thead>
<tr>
<th>Fuente</th>
<th>SAg</th>
<th>Cadenas Vβ</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Endógenos</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mtv-1</td>
<td>Mtv-1 orf (32)</td>
<td>3</td>
</tr>
<tr>
<td>Mtv-2</td>
<td>Mtv-2 orf (30, 32)</td>
<td>14, 15</td>
</tr>
<tr>
<td>Mtv-3</td>
<td>Mtv-3 orf (30, 32)</td>
<td>17a, 3</td>
</tr>
<tr>
<td>Mtv-6</td>
<td>Mtv-4 orf (30, 32, 96)</td>
<td>5, 3</td>
</tr>
<tr>
<td>Mtv-7</td>
<td>Mtv-5 orf (13, 97)</td>
<td>6, 7, 8, 1, 9</td>
</tr>
<tr>
<td>Mtv-9</td>
<td>Mtv-6 orf (30, 32)</td>
<td>17, 5, 11</td>
</tr>
<tr>
<td><strong>Exógenos</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. aureus grupo A</td>
<td>SEA (38, 55)</td>
<td>1, 3, 10, 11, 12, 17</td>
</tr>
<tr>
<td>S. aureus grupo B</td>
<td>SEB (38, 55)</td>
<td>3, 7, 8, 1-3, 17</td>
</tr>
<tr>
<td>S. aureus grupo C1</td>
<td>SEC1 (38, 55)</td>
<td>3, 8, 2, 8, 3, 11, 17</td>
</tr>
<tr>
<td>S. aureus grupo C2</td>
<td>SEC2 (38, 55)</td>
<td>3, 7, 8, 2, 10, 17</td>
</tr>
<tr>
<td>S. aureus grupo C3</td>
<td>SEC3 (38, 55)</td>
<td>3, 7, 8, 2, 8, 1</td>
</tr>
<tr>
<td>S. aureus grupo D</td>
<td>SED (38, 55)</td>
<td>3, 7, 8, 1-3, 11, 17</td>
</tr>
<tr>
<td>S. aureus grupo E</td>
<td>SEE (38, 55)</td>
<td>11, 15, 17</td>
</tr>
<tr>
<td>M. arthritidis</td>
<td>MAM (38, 55)</td>
<td>6, 8, 1-3</td>
</tr>
<tr>
<td>S. aureus</td>
<td>TSST-1 (38, 55)</td>
<td>3, 15, 16, 17</td>
</tr>
<tr>
<td>Yersinia pestis</td>
<td>(55)</td>
<td>3, 6, 7, 8, 1, 9, 11</td>
</tr>
<tr>
<td>Virus de MAIDS</td>
<td>(45)</td>
<td>5, 11, 12</td>
</tr>
<tr>
<td>Virus de la rabia</td>
<td>(68)</td>
<td>6</td>
</tr>
<tr>
<td>T. gondii</td>
<td>(75, 76)</td>
<td>5</td>
</tr>
</tbody>
</table>
embargo la región que codifica para los SAGs es una zona de gran variabilidad y es este polimorfismo el que les confiere la capacidad de interactuar con las diferentes familias de cadenas Vβ32, ejemplificado en la Tabla 1. La función biológica de estos SAGs sería la de estimular a las células del huésped y asegurar la expansión y sobrevida del virus36. Los SAGs provenientes de los Mtv son considerados por el sistema inmune del ratón como propios y ante ellos se ponen en marcha los mecanismos de tolerancia35. Así, las células que expresen las cadenas Vβ específicas para estos SAGs serán eliminadas5, 12, 13, 34 y/o transformadas en anérgicas36. En consecuencia no habrá células maduras que reaccionen con los SAGs endógenos. Así es como en los ratones endorrecios el perfil de cadenas Vβ, que depende de las características genéticas del ratón y del efecto de los SAGs endógenos, es constante y se mantiene durante toda la vida36.

Los Mtv no son los únicos microorganismos que codifican para SAGs. También a principio de la década del setenta se observó que linfocitos periféricos humanos o células de bazo de ratón proliferaban en presencia de una toxina del *Staphylococcus aureus* grupo B (SEB). Esta estimulación ocurría sin sensibilización previa y por su magnitud era más parecida a la acción de un mitógeno que a la de un Ag32. Posteriormente se observó que sólo respondían las células T y que la estimulación in vitro era dependiente de la presencia de moléculas de Clase II del CMH. Actualmente se sabe que esta toxina es un SAg y que, a diferencia de los mitógenos, la respuesta está restringida a células T que expresan determinadas cadenas Vβ del TCRβ38, 39. Los SAGs provenientes de bacterias, virus y parásitos son denominados exógenos y los más estudiados son los relacionados con las intoxicaciones alimentarias como las exotoxinas de *S. aureus* de diferentes grupos serológicos (SEA, SEB, SEC1, 2 y 3, SED y SEE)39, de *Streptococcus pyogenes*40, de *Clostridium perfringens*38, 41, de *Pseudomonas aeruginosa* y *Yersinia enterocolitica*38, 39 y la TSST-1, toxina de *S. aureus* asociada al shock séptico12, 43. También han sido descriptos SAGs de *Mycobacterium leprae*44 y de *Mycoplasma arthritidis*38, 39. Por otro lado, el virus del tumor mamario murino (MMTV) así como el que induce la inmunodeficiencia murina adquirida (MAIDS) presentan SAGs32, 45. En el caso de la infección con el virus de la inmunodeficiencia humana (HIV) existen varias alteraciones en el repertorio de las cadenas Vβ compatibles con la presencia de un SAg46, 47, 48, 49. Entre las moléculas responsables de esta actividad se halla la gp160 y su fracción la gp120 pertenecientes a una glicoproteína de superficie, y la nef. Por otro lado, se observó que la gp120 presenta una alta homología estructural y funcional con Ags de histocompatibilidad humanos (HLA), por lo que no está claro si actúa directamente como un SAg o bien que por su semejanza con una molécula capaz de unir a un SAg lleve otro asociado, como podría ser la nef48.

Si bien los SAGs más ampliamente descriptos son aquellos que afectan a las células T, actualmente también se conocen moléculas que afectan de manera similar a los linfocitos B, como ser la proteína A del *Staphylococcus*50 y la glicoproteína gp120 del HIV41.

**Interacción entre los SAGs y el TCRβ**

A diferencia de los Ags convencionales, los SAGs no necesitan ser procesados ni presentados por las células presentadoras de Ags y son reconocidos por el TCRβ cuando están unidos a las moléculas de Clase II del CMH, es decir que la interacción es dependiente del CMH, pero no restricta38. Estas moléculas se unen principalmente a la región CDR4 de la cadena Vβ del TCR32 o bien a sitios cercanos a ésta52 pero que en todos los casos están fuera de la región que reconoce a los Ags convencionales (Fig. 1). En esta interacción participan además las moléculas de adhesión normalmente involucradas en el reconocimiento de Ags, como CD2 y LFA-1, pero no el CD4 o CD853.

La especificidad de la unión entre un SAg y un linfocito T depende exclusivamente de la cadena Vβ del TCR y cada SAg se une a toda una familia de cadenas Vβ tanto en linfocitos T CD4 como CD832, 38, 54. El genoma del ratón codifica para 20 a 30 familias de cadenas Vβ, de esta manera en una respuesta inmune primaria el porcentaje de células T con especificidad para un determinado SAg es relativamente alto, teóricamente del 4%, mientras que un Ag convencional es reconocido por aproximadamente 1 de cada 106 linfocitos T38. Así es como estas moléculas estimulan un alto número de células T y de allí reciben el nombre de SAGs. Además muchos interaccionan con más
de una familia de cadenas Vβ, incrementando el número de células con posibilidad de ser activadas (Tab. 1).

Otras regiones del TCRαβ también podrían estar involucradas en la unión del TCR con el SAg. Así, la cadena α, que reconoce a las moléculas del CMH, podría incrementar la avidez de la unión o bien interactuar directamente con el SAg. Las características del segmento Jβ también contribuirían a la expansión de determinadas familias de cadenas Vβ.

Un SAg puede ser presentado por moléculas de Clase II del CMH no sólo singénicas sino también alo y xenogénicas. Aun no se conoce claramente el papel del CMH, pero se considera que podría actuar como soporte para el SAg o bien incrementar la avidez de la unión al ser reconocido por el TCRαβ. De una u otra manera su presencia es esencial para la acción de un SAg. El sitio de unión de los SAGs a las moléculas de Clase II del CMH es diferente al de los Ags convencionales (Fig. 1) y varía entre diferentes SAGs y siempre se trata de regiones relativamente no polimórficas del CMH. Así, los SAGs son capaces de unirse a la mayoría de las formas alélicas del CMH, con lo que estimulan linfocitos T sin la especificidad de los Ags comunes, aunque tienen preferencia por diferentes isotipos y alelos del CMH. Las moléculas de Clase I del CMH también serían capaces de unir SAGs.

Los SAGs producen, tanto in vitro como in vivo, una respuesta bifásica en los linfocitos específicos, caracterizada por una primera etapa de expansión y activación seguida de una segunda de inmunosupresión con eliminación y/o anergía de las células. Sin embargo a pesar de la anergia de las células T, una nueva introducción del SAg lleva rápidamente al desarrollo de una respuesta inmune secundaria.

La administración del SAg SEB a ratones adultos produce en una primera etapa una disminución del timo, aumento del tamaño del bazo, aumento del interferón-γ (IFN-γ) sérico, así como la activación de células CD4 y CD8 que expresan la cadena Vβ. Posteriormente sobreviene la inmunosupresión con disminución de la producción de interleuquina-2 (IL-2) y de la proliferación ante el estímulo específico, paralelamente a la presencia de células CD4 anérgicas que entran en apoptosis.

Los SAGs exógenos estimulan a las células CD4 con funciones tanto TH1 como TH2, de manera tal que las citocinas liberadas desencadenan y/o modulan a la respuesta inmune celular y humoral. La capacidad adjuvante así generada que estimula la respuesta inmune ha sido utilizada en el desarrollo de un protocolo de inmunización contra la rabia.

Todas estas características descriptas son comunes a los SAGs provenientes de los Mtvs (endógenos) y a los exógenos. En la Tabla 1 se muestran algunos ejemplos de las alteraciones del repertorio del TCR inducido por ambos grupos de SAGs.

**Patología asociada a SAGs exógenos**

La patología causada por diversas toxinas bacterianas parece deberse a su acción como SAGs, ya que provocan primeramente la estimulación de un elevado número de linfocitos T y de células portadoras de moléculas de Clase II del CMH, tales como macrófagos, monocitos, mastocitos y linfocitos B. Esto desencadena la liberación masiva de linfocinas como IL-2 e IFN-γ y de mediadores inflamatorios como IL-1β, factor necrosante de tumores (TNF) y derivados del ácido araquidónico, que en altas concentraciones pueden causar fiebre, coquexia, pérdida de peso, desbalance osmótico y muerte. A su vez el IFN-γ y el TNF inducen la expresión de moléculas clase II del CMH y de esta forma hay un incremento adicional del número de células capaces de estimularse al unirse al SAg. Los SAGs también aumentan la actividad NK, lo que se debería a una acción directa sobre estas células y a través de su capacidad de inducir la producción de citocinas.

Los SAGs exógenos también podrían estar relacionados con varias formas de autoactividad, como en la artritis reumatoide causada por toxinas de Streptococcus. El aumento de citocinas inducido por un SAg disiparía una expansión policolonal de linfocitos T. De esta manera una población de células potencialmente autoactivas, que se encuentre en una concentración demasiado pequeña como para desarrollar patología, podría proliferar y/o activarse para inducir daño. Algunos SAGs bacterianos inducen a células T CD8 a adquirir funciones citotóxicas contra células con moléculas de Clase II del
CMH. Además, la alteración de la homeostasis inmunológica por la presencia de un SAg, podría llevar a una interacción inapropiada entre las células T y las B y a la síntesis de anticuerpos autorreactivos.

Superantígenos y parásitos

Hasta el momento sólo hay información fragmentada sobre la presencia de SAGs en las infecciones parasitarias. Los trofozoitos de Toxoplasma gondii tienen una actividad de SAG in vitro estimulando preferentemente las células T de ratón CD8+Vβ5-7 y este efecto se manifiesta in vivo por la expansión, seguida de depleción de las células Vβ5-7.

No siempre las alteraciones y/o desbalances en la expresión del repertorio T están vinculadas con la presencia de SAGs. En las lesiones humanas causadas por Leishmania predominan las células CD8 portadoras de la cadena Vβ6, aunque en individuos infectados con Leishmania aethiopica no se encontró evidencia de SAg. Tampoco se ha encontrado una actividad de SAG en la infección con Plasmodium falciparum, ni en ratones infectados con Plasmodium chabaudi. Schistosoma mansoni.

La infección murina con T. cruzi induce una serie de alteraciones inmunológicas que podrían ser causadas por alteraciones en el compartimiento T y que serían compatibles con la presencia de un SAg. La fase inicial de activación policonal, la disminución del tamaño del timo, la esplenomegalia, el incremento en la producción de IFN-y, la posterior inmunosupresión y la presencia de células T CD4 anérgicas que entran en apoptosis ante el estímulo con el anticuerpo anti-CD3 son alteraciones compatibles con la presencia de un SAg del T. cruzi. Sin embargo, la respuesta proliferativa de células humanas estimuladas con SAg del parásito requiere de células presentadoras con CMH propio. En los ratones C3H y C57BL/6 infectados con la cepa CL del T. cruzi, se ha descrito la expansión de células T CD8 portadoras de la cadena Vβ5. Sin embargo, en los ratones BALB/c, CBA/H y CBA/J infectados con T. cruzi, cepa Tulahuén, no se encontraron evidencias de la presencia de un SAg (estudiando el 70% del total del repertorio). Los datos hasta ahora disponibles indican que la respuesta T desencadenada por la presencia del parásito es básicamente policonal y las variaciones puntuales encontradas, serían el resultado de algún epitope dominante, de la acción de citocinas y/o del intenso estímulo antígenico del parásito.

En resumen, los SAGs son moléculas que presentan una interacción diferente con el sistema inmune, son reconocidas sólo por las cadenas Vβ del TCR y por las moléculas Clase II del CMH y en ambos casos se unen a un sitio diferente y de menor polimorfismo que los Ags convencionales. Estas moléculas provocan primeramente una intensa activación de linfocitos T y de células portadoras de moléculas Clase II del CMH. Este efecto sería el responsable por un lado de la toxicidad observada con algunos SAGs exógenos, así como del papel biológico en la transmisión viral. La segunda fase se caracteriza por una inmunosupresión con desaparición y/o anergia de los linfocitos específicos.

Los SAGs generan huecos en el repertorio de los TCR. Esta restricción podría ser desventajosa si se piensa en términos de un menor repertorio de receptores para el reconocimiento de Ags exógenos. Pero puede constituir una ventaja ya que la falta de células con una determinada cadena Vβ disminuye la susceptibilidad ante un determinado SAg. Además así se eliminarían posibles clones autorreactivos reduciendo las posibilidades de autoagresión. La depleción puntual de familias de cadenas Vβ ha sido utilizada a nivel experimental para evitar el desarrollo de enfermedades autoinmunes.

El mayor conocimiento de los mecanismos de acción de estas moléculas no sólo servirá para comprender las patologías en las que participan los SAGs sino también considerar su posible utilización en métodos terapéuticos y profilácticos.

Summary

Superantigens: a particular interaction between microorganisms and the immune system

The discovery of the superantigens (SAGs) offered new insights on the interaction between microorganisms and the host immune system. Associated to Major Histocompatibility Complex (MHC) class II molecules, SAGs bind to the variable domain of the β chain (Vβ) of the TCRβ engaged in the family specificity of lymphocytes.
Therefore, these molecules are able to activate a high number of T lymphocytes as well as surface MHC class II bearing cells, leading to an overriding release of cytokines and inflammatory mediators, which have been related to their toxic effects. Endogenous SAgs are encoded by murine tumor proviruses (MtV) which are integrated in the genome of mice. Bacteria and viruses produce exogenous SAgs and those related to food poisoning have been widely studied. The presence of parasite SAgs is still unclear and further studies are required to establish their existence and effects on the corresponding infections.

Bibliografía


