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WHEN GLUCOCORTICOIDS CHANGE FROM PROTECTIVE TO HARMFUL
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Abstract A fundamental question in the neuroendocrinology of stress and adaptation is how stress mediators
that are crucial for resilience and health can change into harmful signals enhancing vulnerability to

disease. To address this question we focus in the rodent on corticosterone as end product of the hypothalamic-
pituitary-adrenal (HPA) axis, which coordinates the behavioural and physiological response to stressors. The action
of corticosterone is mediated by mineralocorticoid (MR) and glucocorticoid receptors (GR). The receptors are
transcription factors regulating gene transcription but recently these nuclear receptors were found to mediate
also rapid non-genomic actions. MR participates in the initial stress reaction important for appraisal and coping
processes, while management of the later adaptive phase primarily depends on GR. Imbalance in stress mediators
is a characteristic feature of a phenotype vulnerable for stressors. This concept calls for recovery of the MR:GR
balance as a therapeutic strategy to promote resilience still present in the diseased brain. As an example, we
discuss in this article, how the impact of excessive levels of corticosterone in a pharmacological model of type 1
diabetes can be ameliorated after a brief treatment with a GR antagonist.
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Resumen     Cuando los glucocorticoides cambian de protectores a dañinos en un modelo animal de dia
betes tipo 1 . Una cuestión fundamental en la neuroendocrinología del estrés y la adaptación es

saber cómo los mediadores del estrés cruciales para la resiliencia y la salud pueden convertirse en señales
dañinas que aumentan la vulnerabilidad a las enfermedades. Para responder a esta pregunta nosotros nos
centramos en la corticosterona como producto final del eje hipotálamo-hipófisis-glándula adrenal de los ratones,
que coordina las respuestas fisiológicas y conductuales hacia los agentes estresantes. La acción de la
corticosterona es mediada por los receptores de los mineralocorticoides (MR) y glucocorticoides (GR). Estos
receptores son factores nucleares que regulan la transcripción de los genes aunque también se ha encontrado,
hace poco, que pueden ser mediadores de acciones extra genómicas rápidas. Los MR participan en la respuesta
inicial al estrés con relevancia en la evaluación y enfrentamiento al agente estresante, mientras que la fase
adaptativa tardía depende de los GR. El desequilibrio de estos mediadores del estrés es rasgo característico de
un fenotipo vulnerable a los agentes estresantes. La idea es recuperar el equilibrio MR:GR como una estrategia
terapéutica  para promover la resiliencia aún presente en el cerebro enfermo. Como ejemplo discutimos en este
artículo cómo, en un modelo farmacológico de diabetes tipo 1, el impacto de niveles excesivos de corticosterona
puede ser atenuado por un breve tratamiento con antagonistas de los GR.

Palabras clave : diabetes, estrés, hormonas del estrés, glucocorticoides, receptores para glucocorticoides,
marcadores moleculares
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Any stressor –either real or imagined– that threatens
to disturb homeostasis triggers a physiological and be-
havioural response aimed to promote adaptation. The

adaptation to the stressor is coordinated in body and brain
by humoral and nervous systems of which the hypotha-
lamic-pituitary-adrenal (HPA) axis and the sympathetic
nervous system (adrenaline) are the primary mediators
(Fig. 1). The end product of the HPA axis: cortisol (hu-
man) and corticosterone (human, rodents), collectively
called CORT here, does not act alone but operates in
concert with the humoral and nervous signals that medi-
ate the stress response1. While CORT is essential for
health, the hormone becomes damaging if its circulating
levels are either excessive or inadequate to deal with the
stressor. A fundamental question in the biology of stress
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is therefore how CORT can change from a protective into
a harmful signal.

How does CORT act in the stress response? CORT
dampens the initial stress (defence) reactions to the stres-
sor, and prevents them from overshooting2. This action is
mediated by the receptors that control gene transcription
and has as wide a diversity as the variety of stressors.
However, the very same CORT actually also can boost
the initial stress reaction via newly discovered membrane
receptors for the hormone in the hippocampus that can
enhance excitatory neurotransmission3, 4. Moreover,
CORT can mobilize the energy needed to perform these
costly regulations of the stress response, and store en-
ergy for future use when coping with stress is successful.

The secretory pattern of CORT has been used widely
as marker for health and disease. CORT is secreted un-
der basal conditions in hourly pulses which are increased
in amplitude during the activity period, i.e. night time in
rodents and daytime in man. During stress-related dis-

ease and aging the patterns become disordered, a sign
that the HPA axis pulsatility has become dysregulated5.
CORT secretory bursts can be triggered by a stressor
any time. Like the basal pattern also the stress-induced
CORT pattern serves as a biomarker for breakdown of
adaptation and stress-related disease. A healthy resilient
organism is characterized by a rapid activation of the
CORT as long as the secretion of the hormone is also
turned off efficiently.

During the stress response CORT and the other HPA
axis hormones mediate the ability to cope. For this pur-
pose CORT targets in the brain precisely those circuits
that have perceived the initial trigger of the stress re-
sponse; the action exerted by the hormone can be di-
vided in two temporal domains: a fast activating and a
slower suppressive phase (Fig. 2). These actions are
mediated by two types of corticosteroid receptors: miner-
alocorticoid receptors (MR) and glucocorticoid receptors
(GR)6, 7. MR and GR are nuclear receptors operating as
transcription factors. MR is abundantly expressed in lim-
bic structures involved in mood, affect and memory proc-
esses. GR has is expressed widely in neurons and glial
cells with highest abundance in centers involved in regu-
lating the stress response and also in limbic structures.
Thus, in limbic structures such as e.g. the neuronal cir-
cuits of hippocampus (CA1-2 and dentate gyrus), the
amygdala nuclei and areas of the prefrontal cortex MR
and GR are co-localized and expressed in large amounts6.

Fig. 1.– Brain regions activated after stress exposure (Amy;
amygdala, Hipp: hippocampus, PFC: prefrontal cortex) and
output of these areas through the hypothalamus (HYP). A
resulting activation of the fast acting sympatho-adreno-
medullar system (right) and the slower acting HPA axis
system (left) will affect the function of peripheral organs
and feedback to the brain via adrenaline and corticoster-
one, respectively. Adrenaline will eventually activate
noradrenergic transmission from the locus coeruleous (LC),
reaching the amygdala, prefrontal cortex and hippocam-
pus among other areas. Corticosterone readily penetrates
the blood-brain barrier and acts on receptor containing
brain areas such as the limbic brain structures and the
paraventricular nucleus in the hypothalamus. SNS: sym-
pathetic nervous system; ACTH: adrenocorticotropin hor-
mone; CRH: corticotrophin releasing hormone. Reprinted
with permission from Joels and Krugers, Neuronal Plas-
ticity, 2007.

Fig. 2.– Time course of molecular, cellular and behavioral re-
sponses to stress hormones. MR: mineralocorticoid
receptors, GR: glucocorticoid receptors. AVP: arginine
vasopressin. Reprinted with permission from de Kloet,
Joels, and Holsboer, Nature Reviews Neuroscience, 2005.
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An important target of glucocorticoids is the hippoc-
ampus, where GR and MR exert in a co-ordinate manner
complementary actions of the glucocorticoids. It is thought
that the activating MR and the suppressing GR need to
operate in balance to control homeostasis and health.
Thus, imbalance in the MR:GR ratio enhances suscepti-
bility to disease for which the individual is predisposed.
Currently, drugs are being developed that restore MR:GR
imbalance with the purpose to correct stress-related
dysregulations causal to disease. Here we will illustrate
this concept with an animal model for diabetes, which is
characterized by aberrant actions of CORT that can be
corrected by a CORT antagonist.

Diabetes as a disease model for aberrant CORT

Type 1 diabetes (T1D) complications, such as peripheral
and autonomous neuropathy, are well-recognized. How-
ever, T1D can also impact the integrity of the central nerv-
ous system (CNS) as appeared from the pioneering stud-
ies of De Nicola and colleagues at the Instituto de Biología
y Medicina Experimental in Buenos Aires (IBYME-
CONICET)8. How T1D affects CNS integrity remains to
be elucidated. High association of T1D and psychiatric
disorders, notably depression, were reported in cross-
sectional studies9. The underlying mechanism and the
causality behind this association still need to be identi-
fied.

A direct adverse effect of diabetes leading to psychi-
atric disorders, especially depression, was reported by
Lustman et al10 and alterations in the activity of the HPA
axis were reported in diabetic patients11. In addition, stud-
ies on diabetic patients demonstrated mild to moderate
slowing of mental speed and diminished mental flexibil-
ity12. Although the alterations in cognitive functions under
normal conditions are not severe, mild cognitive defects
can influence everyday activities in more demanding situ-
ations. While the mechanism that underlies this cognitive
impairment is poorly understood, Sandeep et al reported
in 200413 that hypercortisolism in diabetic patients may
contribute to the dysfunction of the hippocampus, a brain
area that belongs to the limbic system and plays major
roles in memory processes and spatial navigation.

To investigate disease initiation, progression, and treat-
ments without exposing humans to unnecessary and po-
tentially unethical risks, animal models have been devel-
oped. They have contributed important knowledge regard-
ing the study of diabetes. The physiology of mice, rats,
and other animals is remarkably conserved in compari-
son to the human condition, and over the last 40 years
several models have become available. For our studies
we have used two animal models, i.e. a pharmacological
model, the streptozotocin (STZ)-treated mouse, and a
genetic model, the non-obese diabetic (NOD) mouse,

which spontaneously develops the disease. Like type 1
diabetic patients, these animal models show high circu-
lating levels of glucocorticoids, increased sensitivity to
stressors, and morphological alterations in various brain
areas14-16. Our results obtained from experiments with the
STZ model will be described here.

When T1D develops, the lack of insulin causes both
hyperglycemia and cellular starvation, a condition known
as metabolic stress. The metabolic stressor, as any other
kind of stress condition, activates the HPA axis leading to
increased corticosterone levels and occupancy of GRs in
brain and pituitary. Previous reports in T1D animal mod-
els showed GR downregulation in the hippocampus17 and
HPA axis hyperactivity18. In addition, elevated glucocor-
ticoids further enhance the hyperglycemic effect of insu-
lin by inhibiting cellular glucose uptake, also in neurons
and glial cells in the brain. Therefore, hyperglycemia will
become chronic. In this way, continuous metabolic altera-
tions will contribute to the defective shut-off of the stress
response. During chronic hypercorticism various patho-
physiologies are promoted including dysfunction of the
hippocampus19, 20. Remodelling of the structure of the
hippocampus is accelerated and its vulnerability to cog-
nitive dysfunctions is enhanced.

A fundamental question in the neuropathophysiology
of T1D is therefore whether glucocorticoids aggravate the
functional and morphological signs of neurodegeneration
and cognitive impairment. In our studies we tested the
hypothesis that the onset of diabetes induces dysre-
gulation of the HPA axis and hypersecretion of glucocor-
ticoids which then renders the brain more vulnerable to
metabolic insults causing damage and concomitant cog-
nitive disturbances.

The STZ-induced diabetes mouse model showed that
the primary event leading to hypercorticism is hyperres-
ponsiveness of the adrenal gland21. To further investigate
the underlying mechanism leading to the observed
hypercorticism in diabetes we analyzed molecular mark-
ers of the HPA axis activity at different time points. The
results showed a profound dysregulation of the HPA axis
and a time-dependent adaptation to the new metabolic
condition. Whether this adaptation in T1D leads to a more
fragile state of the brain in which glucocorticoid excess
may enhance the potential for damage and attenuate a
protective mechanism, thus facilitating cognitive impair-
ment was addressed in the next two experiments.

First, the hippocampus of the diabetic mice exhibited
increased neuronal activation, signs of oxidative stress
and astrogliosis. These data support the concept that
uncontrolled diabetes produces signs of hippocampal
pathology, which procedes together with changes in other
brain structures such as hypothalamus and cerebral cor-
tex16, 21. Cognitive deficits were observed in the hippoc-
ampus-dependent novel object-placement recognition
(NOPR) task. The NOPR task uses the spontaneous ex-
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ploration of objects in a novel environment22 and thus al-
lows the study of mild hippocampal alterations. Non-dia-
betic control mice preferred the exploration of the object
placed in a novel location while the diabetic mice do not.
This reduced exploration of the diabetic mice indicates
impaired spatial object-placement memory23, 24 (Fig. 3).
Interestingly, performance in the socalled Morris water
maze, retention in the forced swim task and emotional
parameters in the elevated plus maze were not affected
in diabetic mice. These tasks possibly are insensitive to
the moderate hippocampal disturbances observed at early
stages of diabetes, while during a more prolonged dis-
ease state behavioral deficits were established24.

 Second, to clarify the role of hypercorticism in the hip-
pocampus of STZ-diabetic mice we have used
mifepristone (RU38486), an antagonist of the action of
glucocorticoids at the GR. We showed that the continu-
ous blockade of glucocorticoid action by treatment with
mifepristone for 4 consecutive days (from day 6 to 10 of
after onset of diabetes in the STZ model) prevented some
of the hippocampal aberrations and reversed others24. The
prevention of astrogliosis and excessive neuronal activa-
tion in the hippocampus showed that mifepristone treat-
ment can interfere directly with the progression of hip-
pocampal alterations observed in diabetic mice24, 25. Cog-
nitive deficits observed at day 11 of diabetes were amel-
iorated. Surprisingly, the diabetic animals treated with

mifepristone performed even better than the untreated
controls. A rationale behind this observation is that the
blockade of the GR would allow a more prominent func-
tion of neuroprotective MR-mediated actions26. Hence this
would predict that during GR blockade in the face of high
circulating glucocorticoids the maintenance of hippocam-
pal integrity is a necessary condition for improved per-
formance in the NOPR task 27.

In addition to this role of glucocorticoids in diabetes
neuropathology other factors altered in T1D might also
be involved. For instance, the imbalance of glucose me-
tabolism may be of importance in modulating brain dis-
turbances induced by diabetes. Some studies have de-
scribed that hyper- and hypoglycemic episodes can
cause acute cerebral dysfunction in diabetic animals14,

28. In the STZ-induced mouse model of T1D, GR an-
tagonist normalized hippocampal functions regardless
the hyperglycemic state, which is not altered in diabetic
mice treated with mifepristone. Therefore, it is unlikely
that hyperglycemia per se accounts for the hippocam-
pal disturbances observed. These findings are in agree-
ment with a recently published report22, in which corti-
costerone replacement of adrenalectomized rats at
physiological concentrations restored hippocampal func-
tions, while glycemia remained elevated. However, the
possibility of an additional effect of glucocorticoid ex-
cess on hippocampal glucose metabolism in T1D can
not be discarded.
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Fig. 3.– Mifepristone (a glucocorticoid receptor antagonist) effect on the novel
object-placement recognition (NOPR) task. A) Photograph of the NOPR task:
during the sample trial the two objects (water bottles) are equally explored
(data not shown). After 50 minutes, during the test trial, one of the objects is
re-located. B) Percentage of preference for the re-located object during the
test trial for control and 11-days diabetic mice vehicle- and mifepristone-
treated. Values expressed mean ± SEM. *p<0.05.



TYPE 1 DIABETES ANIMAL MODEL 357

Furthermore, cerebral dysfunction in T1D can also be
a result of insulin deficiency. Although several studies
describe a central role of insulin in animal models of dia-
betes29-31, a recent report revealed that hippocampal im-
pairments are not determined by changes in insulin pro-
duction22. Nevertheless, it is likely that the negative effect
of diabetes on hippocampal plasticity may be attributable
to an interaction between elevated glucocorticoids and
insulin receptor signaling.

In conclusion, the results described in this article pro-
vide evidence that glucocorticoid excess and the concomi-
tant continuous activation of the GR are responsible for
molecular changes and hippocampal-associated behav-
ioural dysfunction at the early stages of diabetes. They
indicate that in T1D excess glucocorticoids have lost their
function in restoring homeostasis and have become dam-
aging to the brain. The receptors for glucocorticoids may
therefore be an excellent target for a therapy aimed to
normalize the disturbed hippocampal functions charac-
teristic for diabetes neuropathology.
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- - - -
My work is now (1858) nearly finished; but as it will take me many more years to

complete it, and as my health is far from strong, I have been urged to publish this
abstract. I have more especially induced to do this, as Mr. Wallace [Alfred Russell
Wallace], who is now studying the natural history of the Malay Archipielago, has arrived
at almost exactly the same general conclusions that I have on the origin of species. In
1858 he sent me a memoir on this subject, with a request that I would forward it to Sir
Charles Lyell and Dr. Hooker, who sent it to the Linnean Society, and it is published in
the third volume of the Journal of that society. Sir C. Lyell and Dr. Hooker, who both
knew of my work –the latter having read my sketch of 1844– honoured me by thinking
it advisable to publish, with Mr. Wallace's excellent memoir, some brief extracts from
my manuscripts.

Mi trabajo está ahora (1859) casi terminado; pero completarlo me llevará muchos
más años, y como mi salud dista de ser robusta, me han apurado a publicar este
resumen. He sido especialmente inducido a hacer esto, porque Mr. Wallace, quien
está ahora estudiando la historia natural del Archipiélago Malayo, ha arribado a casi
exactamente las mismas conclusiones generales que yo tengo acerca del origen de
las especies. En 1858 me mandó una memoria sobre el tema con el pedido de pasarla
a Sir Charles Lyell y al Dr. Hooker, quienes la mandaron al Linnean Society y está
publicada en el tercer volumen del Journal de esa sociedad. Sir C. Lyell y el Dr. Hooker,
quienes conocían mi trabajo, –el último leyó mi borrador de 1844– me honraron al
juzgar recomendable publicar, con la excelente memoria de Mr. Wallace, algunos breves
extractos de mis manuscritos.

Charles Robert Darwin (1809-1882)

The Origin of Species by Means of Natural Selection (First edition: November 24th,
1859). Chicago: Encyclopaedia Britannica, 1952. Introduction, p 6


