INMUNOTHERAPY OF MELANOMA: PEPTIDE MIMICS OF A HUMAN HIGH MOLECULAR WEIGHT-MELANOMA ASSOCIATED ANTIGEN

XINHUI WANG, WEI LUO, SOLDANO FERRONE

Department of Immunology, Roswell Park Cancer Institute, Buffalo NY, USA

Abstract

The realization that tumor cells utilize multiple mechanisms to escape from immune recognition and destruction has stimulated interest in developing and applying immunotherapeutic strategies which target both humoral and cellular immunity to malignant cells. As a result, the tumor-associated antigens (TAA) used as targets have to be expressed on the cell surface membrane of malignant cells. Furthermore, since most of the TAA used for active specific immunotherapy are self-antigens, a challenge facing tumor immunologists is to develop strategies which are effective in breaking tolerance to self-antigens. This chapter describes one strategy which relies on the use of peptide mimics of the human high molecular weight-melanoma associated antigen (HMW-MAA) as immunogens to implement active specific immunotherapy in patients with malignant melanoma. These mimics, which are isolated from phage display peptide libraries by panning with anti-HMW-MAA monoclonal antibodies, are expected to induce both humoral and cellular anti-HMW-MAA immunity.

Key words: melanoma, active specific immunotherapy, peptide mimics, melanoma associated antigens

The identification and molecular characterization of human tumor associated antigens (TAA) during the last few years has rekindled interest in the utilization of anti-TAA antibodies, by themselves or in combination with CD4+ and/or CD8+ T cells, to control tumor growth. This trend has been strengthened by the association between induction of anti-TAA antibodies in patients with malignant diseases and improved prognosis and by the recent favorable results of passive immunotherapy of malignant diseases with anti-TAA antibodies by themselves or in combination with chemotherapy. The large majority of TAA identified in malignant cells with T cells or with antibodies have been found to be self-antigens which are expressed in larger amounts in malignant cells than in their normal counterparts, most likely because of abnormalities in gene regulation associated with the transformation process. Therefore a challenge facing tumor immunologists in applying active specific immunotherapy of malignant diseases is to develop and utilize approaches which are effective in breaking tolerance to self-antigens.

Postal address: Dr. Soldano Ferrone, Department of Immunology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA

Fax: (1-716) 845-7613 e-mail: soldano.ferrone@roswellpark.org
Among the many approaches which are being tested we have selected the one relying on the utilization of mimics of TAA as immunogens. The rationale for our choice derives from the results of our previous clinical trials in malignant melanoma utilizing mouse anti-idiotypic monoclonal antibodies which mimic the high molecular weight-melanoma associated antigen (HMW-MAA)15, 17. We found that anti-idiotypic monoclonal antibodies were more effective than the original TAA in breaking tolerance to a self-antigen. Anti-idiotypic antibodies elicited anti-HMW-MAA antibodies in more than 50% of the immunized patients, while the HMW-MAA was not immunogenic. This finding is likely to reflect the deletion, during the establishment of self-identity, of B cell clones that recognize the HMW-MAA with high affinity. In contrast the immunogenicity of the corresponding anti-idiotypic antibodies is likely to reflect their ability to stimulate clones which have not been deleted during the establishment of self-identity, since they secrete antibodies reacting with the corresponding antigen with an affinity below the threshold required for their deletion. We have selected the HMW-MAA as a target of immunotherapy because of its high frequency of expression in patients with melanoma18, 19, its high expression by melanoma cells with limited intra- and inter-lesional heterogeneity19, 20, its restricted distribution in normal tissues18, 19 and its suggested role in the metastatic potential of melanoma cells21, 22. Furthermore the expression of HMW-MAA by pericytes23 suggests that the effect of anti-HMW-MAA immunity on melanoma lesions may be mediated not only by a direct interaction with melanoma cells, but also by disturbing the blood supply.

The mimics of HMW-MAA we plan to use as immunogens are represented by peptides we have isolated by panning phage display peptide libraries with mouse anti-HMW-MAA monoclonal antibodies and with human anti-HMW-MAA single chain Fv fragments. Analysis of the isolated peptides has shown that the large majority of them do not display a significant homology in their sequence with the published amino acid sequence of the HMW-MAA24. Furthermore the isolated peptides have distinct sequences. Most of the peptides react only with the antibody used for their isolation and do not crossreact even with antibodies which display a high degree of homology in the amino acid sequence of the variable regions of their heavy and light chains with those of the antibodies used for their isolation. Only the peptides isolated from the phage display peptide library X1525 with the mouse monoclonal antibodies 149.53 and 225.28 display homology with the amino acid sequence of HMW-MAA. As shown in Table 1, the sequences of the peptides isolated with the monoclonal antibodies 149.53 and 225.28 are identical to that of the HMW-MAA at positions 1846-1850 and 1852 and at positions 1457-1460, respectively. It is noteworthy that the monoclonal antibodies 149.53 and 225.28 crossreact with the rat antigen NG2, a chondroitin sulfate proteoglycan isolated from a chemically induced rat neuronal tumor26. The human HMW-MAA displays an approximately 80% homology with the rat NG2 antigen in its amino acid sequence24, 27. The aminoacids shared by the peptides isolated with the monoclonal antibodies 149.53 and 225.28 with the HMW-MAA are also present in the NG2 antigen27, therefore strengthening the possibility that these amino acids play an important role in the expression of the determinants recognized by the two monoclonal antibodies. Interestingly, both monoclonal antibodies are; less reactive with the rat NG2 antigen than with the human HMW-antigen restricted, HMW-MAA specific cytotoxic T lymphocytes in addition to anti-HMW-MAA antibodies, ii) they eliminate the induction of antibodies to constant and variable regions of mouse anti-idiotypic monoclonal antibodies and iii) they facilitate the development of immunogens resulting from the fusion of peptide(s) with cytokines which are likely to display an increased immunogenicity. Lastly, from a practical view point it is easier and less expensive to prepare synthetic peptides to be used as immunogens in clinical trials than mouse anti-idiotypic monoclonal antibodies.

Acknowledgements: The authors wish to acknowledge the excellent secretarial assistance of Mrs Charlene DeMont and Mrs Donna Strain. This work was supported by PHS Grants CA37959, CA51814 and CA85184 awarded by the National Cancer Institute, DHHS.

References

2. Boon T, Cerottini JC, Van den Eynde B, Van der Bruggen P, Van Pel A. Tumor antigens recognized by T

<table>
<thead>
<tr>
<th>Monoclonal antibody</th>
<th>Homology with HMW-MAA and NG2 antigen of peptides isolated with monoclonal antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>149.53</td>
<td>Peptide HMW-MAA</td>
</tr>
<tr>
<td></td>
<td>Peptide NG2</td>
</tr>
<tr>
<td>225.28</td>
<td>Peptide HMW-MAA</td>
</tr>
<tr>
<td></td>
<td>Peptide NG2</td>
</tr>
</tbody>
</table>

Amino acids which are identical in the isolated peptides and in the antigen analyzed are bolded.
Indeed a great deal of industrious work is being done on cancer ... but someone should have another bright idea.

De hecho se está haciendo muchísimo trabajo de peso en cáncer ... pero alguien tendría que venir con otra brillante idea.

Rudolf Virchow (1821-1902)