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ACYLGLYCEROL SYNTHESIS IN LIVER OF TYPE II DIABETIC RATS FED A DIET SUPPLEMENTED
WITH EITHER N-6 OR N-3 FATTY ACIDS
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Abstract Liver is one of the tissues most actively involved in  triacylglycerol synthesis and secretion. Hypertri-
glyceridemia is commonly associated with the diabetic state which has been detected in very young

rats after the induction of experimental diabetes. In the present work, acylglycerol synthesis in liver of streptozotocin-
treated rats, fed a diet supplemented with n-3 and n-6 fatty acids, was studied. At the onset of the experiment,
plasma triacylglycerol levels increased significantly in diabetic animals when compared to controls. Two weeks after
the dietary treatment, the aforementioned parameter decreased in diabetic animals consuming either n-6 or n-3 fatty
acids. In control rats, n-3 fatty acids depressed triacylglycerol synthesis in liver microsomes. In the diabetic group
both diets increased diacylglycerol and triacylglycerol synthesis. The addition of liver cytosolic fraction from control
rats to the incubation medium, stimulated the triacylglycerol synthesis in all the groups. Nevertheless, the radioactivity
recovered in the neutral lipid fractions was lower in the samples from rats fed n-3 fatty acids compared to n-6. We
conclude that dietary n-3 fatty acids decreased significantly triacylglycerol plasma levels in diabetic rats probably
through the inhibition of liver triacylglycerol secretion. In addition, there probably is an n-3 fatty acid sensitive factor
in the liver cytosolic fraction able to depress triglyceride synthesis.

Resumen Síntesis de acilglicerol en hígado de ratas diabéticas tipo II  alimentadas con una dieta suple-
mentada con ácidos grasos de las series n-6 y n-3. El hígado es uno de los tejidos más activamente

involucrados en la síntesis y secreción de triacilglicerol. La hipertrigliceridemia se ha observado aun en ratas muy
jóvenes después de la inducción experimental de la diabetes. En el presente trabajo se estudió la síntesis de
acilglicéridos (a partir de ácido 1-C14-palmítico), en ratas diabéticas alimentadas con una dieta suplementada con
ácidos grasos de las series n-6 y n-3. Al inicio del experimento el contenido de triacilglicerol plasmático fue más
elevado en los animales diabéticos que en los controles. Después de 2 semanas de tratamiento dietético esos valores
descendieron en los animales diabéticos alimentados con ácidos grasos n-6 y n-3. En microsomas hepáticos la
ingesta de ácidos grasos n-3 disminuyó la síntesis de triacilglicerol en las ratas normales. En las diabéticas se
observó un aumento de la síntesis de diacilglicerol y de triacilglicerol con ambas dietas. El agregado de la fracción
citosólica hepática de ratas controles al medio de incubación produjo un ascenso de la síntesis de triglicéridos en
todos los grupos. No obstante, el incremento fue mucho menor en los animales alimentados con ácidos grasos n-
3, respecto de los que ingieren n-6. Se concluye que la disminución de los niveles de triglicéridos plasmáticos en
presencia de ácidos grasos de la serie n-3 se produciría a través de la inhibición de la secreción hepática de los
mismos. En la fracción citosólica hepática existiría un componente sensible a los ácidos grasos n-3 capaz de deprimir
la síntesis de triglicéridos.
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3-phosphate and/or dihydroxyacetone phosphate to yield
PA. The PA is then hydrolyzed to sn-1,2-diacylglycerol
(DAG), which is further acylated to TAG1.

Hepatic TAG are known to accumulate in experimental
diabetes2. The excessive store may result from over-
synthesis of TAG or its decreased output from liver (as
very low density lipoproteins) or a combination of these
factors. Murthy and Shipp3, using diabetic rats,
demonstrated that hepatic TAG accumulation was
associated to an augmentation in the rate of TAG
production. An increase in the in vivo hepatic TAG
biosynthesis was also shown by Woods et al. after the
administration of streptozotocin to rats4.

Liver is one of the tissues most actively involved in
triacylglycerol (TAG) synthesis and secretion. Among the
different routes generally recognized for TAG bio-
synthesis, the phosphatidic acid (PA) pathway is dominant
in liver. This process takes place in the endoplasmic
reticulum and involves a stepwise acylation of sn-glycerol-
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The consumption of polyenoic fatty acids results in a
reduction of blood lipid levels. The low incidence of
coronary heart disease in populations consuming such
oils has been attributed to a lowering effect of blood lipids5.
However, opposite evidence concerning the effectiveness
of polyunsaturated fatty acis in decreasing serum TAG
levels has been published. Some authors described that
although n-6 fatty acids from vegetable origin are effective
hypolipemics, long chain n-3 fatty acids of marine oils
are quantitatively more potent effectors6-8. Another group
found that dietary sunflower oil reduced fasting serum
TAG levels whereas salmon oil had no such property9.
The mechanism by which polyenoic fatty acids, especially
n-3, lowers blood TAG concentration was attributed to a
suppression of hepatic TAG production caused by the
inhibition of DAG acyltransferase10. In addition, eicosa-
pentaenoic acid inhibits the synthesis and secretion of
TAG in cultured rat hepatocytes11.

Taking into account these considerations, the present
study was undertaken to evaluate the effect of equivalent
amounts of either n-6 or n-3 fatty acid supplementation
on hepatic acylglycerol synthesis in chemically induced
diabetic rats.

Material and Methods

Chemicals

Chemicals were purchased from the indicated suppliers in the
United States: [114C] Palmitic acid [57 Ci/mol], New England
Nuclear Corp. (Boston, MA); unlabeled palmitic acid and lipid
standards, Nu-Chek Prep (Elysian MN), and Coenzyme A,
Sigma Chemicals Co (St. Louis, MO). Streptozotocin (STZ) was
kindly donated by Upjohn Laboratories (Kalamazoo, MI). All
other chemicals were of analytical grade.

Animals and experimental design

Male Wistar rats, weighing 200-250 g, were maintained on
standard purina chow and water ad libitum before being  placed
on the experimental diet. Diabetes was induced by the
intravenous injection of STZ (70 mg/kg), dissolved in citrate
buffer (pH 4.5). Control animals received only an injection of
equivalent volume of buffer alone. Only those rats with blood
glucose levels higher than 300 mg/dL were considered diabetic.

Ten control and 10 diabetic animals were divided into two
groups of 5 animals each. One group was fed a basal diet
consisting of (in cal) 70% starch, 22% casein plus vitamins and
minerals, and supplemented with 2% (by weight) of free fatty
acids extracted from corn oil. The same diet was also
administered to the other group except that the corn oil
component was replaced by fatty acids extracted and
concentrated from cod liver oil. Cod liver oil concentrated was
enriched with both eicosatrienoic and docosahexaenoic acids
to reach the n-3 fatty acid levels which should be equivalent to
that of the n-6 fatty acids in corn oil (52% n-6 vs 46% n-3)12.
Control and diabetic rats were fed on each of these diets for a
total of 2 weeks. All animals were kept in groups of two or three
in stainless-steel cages with free access to food and water.

Isolation of liver microsomes and cytosolic fraction

At the end of the dietary treatment the animals were killed by
decapitation. Blood was drained off and collected for plasma
glucose and TAG determinations. Livers were quickly excised,
weighed, and homogenized in an ice-cold buffer (1:3 wt/vol)
containing 0.25 M sucrose, 62 mM phosphate buffer (pH 7.0),
0.15 M KCl, 5 mM MgCl2 and 100 µM EDTA. The homogenate
was centrifuged at 10.000 g for 20 min at 4 °C. The pellet was
discarded and the supernatant was centrifuged again (100.000
g for 60 min) at 4 °C. The supernatans for the second centrif-
ugation were considered as cytosolic fractions. The pellets
(microsomes) were resuspended in cold homogenizing solution.
Protein content in both microsomal and cytosolic fractions was
determined by the method of Lowry et al.13. Plasma glucose and
TAG levels were quantitated using commercial enzymatic kits
(Wiener Lab. Test, Rosario, Argentina).

Determination of glycerolipid synthesis

Glycerolipid synthesis was measured by estimating the
incorporation of labeled palmitic acid into phosphatidate,
diacylglyceride and triglyceride molecules, according to Lloyd-
Davies et al.14. Five nmol of labeled acid plus 40 nmol of
unlabeled acid were incubated with 250 µg of liver microsomal
protein in a metabolic shaker at 37 °C for 60 min. The incubation
medium contained 50 mM phosphate buffer, pH 7.4; 2 mM
MgCl2; 5 mM N-acetylcysteine; 0.2 mM Coenzyme A and 20
mM dl-α-glycerophosphate. In some experiments the hepatic
cytosolic fractions obtained from the corresponding control
group were added to the incubation medium (0.8 mg protein/
tube). In all cases the final volume of the incubation medium
was 350 µl. The reaction was stopped by the addition of 3 ml
of chloroform-methanol mixture (2:1 by vol.). Lipids were
extracted according to Folch method15 and separated by high
performance thin layer chromatography (TLC) on silica G plates
developed in hexane: diethyl ether: acetic acid (80:20:1 by vol.).
The bands of glycerolipids were identified using iodine vapor.
The spots were cut off from the plates and quantitated by liquid
scintillation counting.

Statistical analyses

Results were tested statistically by a one-way analysis of
variance (ANOVA).

Results

After one week of STZ injection, the rats became severely
diabetic. The two-week dietary treatment did not alter
the hyperglycemic state (data not shown). The values
for plasma TAG levels determined both at the beginning
of the dietary treatment and at the time of sacrifice (two
weeks later) are shown in Fig. 1. At the onset of the
experiment, diabetic rats showed a significant increase
in the TAG content. The values obtained at the start of
the experiment in control rats were not modified by the
dietary treatment. In diabetic animals consuming either
n-6 or n-3 polyunsaturated fatty acids a significant
decrease in circulating TAG levels was found. In both
cases the values obtained were even significantly below
the non diabetic group.
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Fig. 1.– Plasma TAG levels in control (open bars) and diabetic
(stripped bars) rats at the beginning of the experiment (start)
and after 2 weeks on either n-6 or n-3 fatty acid supplemented
diets. Data are the mean ± SEM from 5 animals. Values not
bearing the same superscript letter are significantly different
at P < 0.05 or less.

Fig. 2.– Incorporation of [1-14C] palmitic acid (16:0) into various
acylglycerols of control (open bars) and diabetic (stripped
bars) rats, in liver microsomal membranes (upper panel) and
liver cytosolic fraction (lower panel). Fatty acid families
supplemented to the diets are indicated inside the bars. Data
are the mean ± SEM from 5 animals. Values not bearing the
same superscript letter are significantly different at p < 0.05
or less. PA: phosphatidic acid, DG: diacylglycerol, TG:
triacylglycerol.

Figure 2, upper panel, illustrates the incorporation of
palmitic acid into glycerolipids in liver microsomes. The
fatty acid incorporated primarily in the PA fraction (50-
75% of total radioactivity) in both control and diabetic
animals. Comparing the effect of n-6 with n-3 diets, in
control rats, it was observed that the acids belonging to
marine oil enhanced the incorporation of palmitic acid
into PA by 20%. The same diet decreased significantly
the formation of DAG ant TAG by 20% and 50%,
respectively. STZ-induced diabetes altered the synthesis
of the three main lipid fractions studied. Thus, the
formation of PA was reduced by around 25%, whereas
the labeling of both DAG and TAG increased significantly.
However, the changes of the latter fractions induced by
diabetes were more profound when the rats were fed
fish oil derivatives.

The effect of the addition of liver cytosolic fraction
obtained from control rats on the incorporation of palmitic
acid into PA, DAG and TAG in microsomes is shown in
Fig. 2, lower panel. The incorporation of palmitic acid
into PA was lower than that observed in the microsomes
with no addition of cytosol. Nevertheless, the radioactivity
recovered in PA was higher in those samples belonging
to animals fed n-3 fatty acids than in those treated with
n-6. No differences between control and diabetic samples
were detected. An opposite behavior was evidenced when
the incorporation of palmitic acid into TAG was measured.
In this case, n-3 fatty acids produced a significant
reduction in the radioactivity recovered either in control
or diabetic samples, compared to n-6 fatty acids. No
changes were observed in DAG synthesis among all the
groups studied.

Discussion

A dietary mixture supplementation of a moderate amount
of free fatty acids belonging to either n-6 or n-3 family,
produced no changes in TAG plasma levels in normal
rats (Fig. 1). These findings contrasted with those
published in animal experimental trials, where a great
proportion of fish oils in the diet decreased that
parameter16, 17. However, TAG levels were not significantly
modified by reducing the dietary amount of marine fatty
acis18, while in rats fed moderate amounts of fats, dietary
sunflower oil efficiently reduced fasting serum TAG
levels9. On the other hand, concerning marine oils it has
been assumed that eicosapentaenoic (EPA) or
docosapentaenoic acid (DHA) or both, are responsible
for the TAG lowering effect. In most studies fish oil was
used with various contents of EPA and DHA, and only in
a few studies the effect of these acids, was examined
separately. Recently, it was reported19, 20 that EPA and
not DHA, is the fatty acid primarily responsible for the
TAG-lowering effect of fish oil in rats. This study is
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consistent with observations in normolipidemic rats21-23

but it is in contrast to other publications24. We assume
that the differences on plasma TAG concentration
informed by several authors, are the consequence of
either the amount or grade of purification of the fatty acids
given in the diet, as well as, the length of the feeding
period.

Few studies showing the most potent reducing effect
of diets rich in fish oil compared to diets rich in vegetable
oil on plasma TAG levels, report the responses on liver
TAG levels. Yeo and Holub25 found a lowering effect of
dietary fish oil on liver TAG synthesis compared to
sunflower oil. Rustan et al.26 noted that EPA acid reduces
both the synthesis and secretion of TAG in rat
hepatocytes. More recently, Flémont and Gozzelino
reported that diets with salmon oil were more effective in
reducing liver TAG concentration compared to those with
sunflower oil27. This observation agrees with the data
obtained here since TAG and DAG synthesis in liver was
significantly decreased in non diabetic rats fed marine oil
compared to those fed on vegetable oil (Fig. 2).

Hypertriglyceridemia is commonly associated with the
diabetic state; this fact was even observed in rats a few
days after the induction of chemical diabetes4. In the
present work high levels of plasma TAG were clearly
shown a week after the administration of STZ to rats
(Fig. 1). This parameter was reduced to more than 50%
when the animals were studied for 2 weeks after being
on both diets, according to previous observations of other
authors8, 16, 17. Moreover, the values obtained were
significantly lower than those of control rats on the same
diet. As published by Phillipson et al.6, abnormally higher
plasma TAG levels seem to react better to dietary lipid
supplementation than those in normal concentration.

The higher rate of hepatic TAG biosynthesis is one of
the factors that has been suggested to contribute to the
diabetic-related change in serum TAG levels4. The results
of our study on TAG synthesis are chiefly independent of
the regimen, and they demonstrated an increased recovery
of radioactivity by the neutral lipid (DAG, TAG) fractions in
diabetes, while the incorporation of palmitic acid in PA
decreased significantly. It was previously shown that the
over-synthesis of TAG in diabetes was associated with
higher activities of phosphatidate phosphohydrolase and
DAG acyltransferase3. These observations could explain
the flow of PA into the TAG biosynthetic pathway and
hence the lower values of this substrate.

The ingestion of fish oils containing n-3 polyun-
saturated fatty acid by normal rats produced a reduction
in liver TAG synthesis10, 11, 25, 26. The incorporation of
palmitic acid into TAG and DAG was lowered by 20%
and 47%, respectively, in the fish oil group (Fig. 2, upper
panel) suggesting an inhibitory effect on the enzymes
involved in this metabolic pathway. According to these

results, an inhibitory effect of EPA acid on the liver DAG
acyltransferase has been reported10, 26. In vivo studies
also demonstrated that DAG acyltransferase activity was
significantly lower in fish-oil fed animals than in animals
fed vegetable oils28. Moreover, Marsh et al.29 suggested
that feeding fish oil to rats suppresses the activity of
phosphatidate phosphohydrolase.

In spite of the results obtained in control rats, n-3
dietary intake was not capable to depress high levels of
acylglycerol biosynthesis observed in the diabetic state.
However, TAG plasma levels decreased significantly
under both polyunsaturated fatty acid dietary treatments.
These results can be explained through the inhibition of
liver TAG secretion produced by dietary polyunsaturated
fatty acids in diabetic rats30, 31.

The addition of the cytosolic fraction to the incubation
medium increased the microsomal TAG synthesis in all
groups of rats. This observation can be attributed to the
stimulation of in vitro TAG synthesis in microsomes
produced by a number of cytosolic proteins, in particular
acyl CoA and fatty acid binding proteins32. Under these
conditions, the enhancement of TAG synthesis was more
limited in rats fed n-3 fatty acids than in those treated
with n-6 series, indicating the presence of a stimulating
factor sensitive to inhibition by n-3 fatty acids, probably
acting at the last step on TAG biosynthesis.

In conclusion, dietary n-3 fatty acids decreased
significantly TAG plasma levels in diabetic rats probably
through the inhibition of liver TAG secretion, since the
incorporation of labeled plamitic acid into TAG was clearly
stimulated in the liver microsomal fraction. There is an
n-3 fatty acid sensitive component in the liver cytosolic
fraction able to depress TAG synthesis. Further studies
are necessary in order to identify the aforementioned
factor.
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