EFFECT OF RN-301 IMMUNOMODULATOR ON BRONCHUS-ASSOCIATED LYMPHOID TISSUE (BALT) IN PROTEIN DEPLETED RATS AT WEANING

MARIA GABRIELA MARQUEZ, GUSTAVO A. SOSA, NORA H. SLOBODIANIK, ALEJO FLORIN-CHRISTENSEN, MARIA ESTELA ROUX

Laboratorio de Inmunología Celular, Departamento de Ciencias Biológicas, y 1 Departamento de Nutrición, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires; 2 Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires

Summary It has been previously demonstrated in Wistar rats that severe protein deprivation at weaning, even after refeeding with a 20% casein diet for 21 days, provokes alterations in IgA+ B cell and T cell populations from gut and GALT (gut associated lymphoid tissue) that are reverted by immunomodulator IM-104. In the present report, we investigate the influence of RN-301 (quite similar to IM-104) given by the oral or subcutaneous route during the protein deprivation period, in the seeding of BALT with IgA+ B and CD5+T cells. The immunomodulator RN-301 contains LPS from E. coli and membrane and ribosomal fractions of P. acnes. Tissue sections of the lower respiratory tract were studied by immunohistochemistry. The immunomodulator RN-301 administered by the oral route favours the significant increase in the seeding of the BALT lamina propria with IgA+B and CD5+T cells (p < 0.001). However, the RN-301 given by the subcutaneous route does not favour the repopulation of the BALT lamina propria. The ribosomal fractions from P. acnes associated with LPS from E. coli contained in the immunomodulator RN-301 administered by the oral route may rescue the small resting lymphocytes in the gut-associated lymphoid tissue (GALT). This event favours their proliferation and migration to the BALT.

Key words: malnutrition, immunomodulator RN-301, BALT

Mucosae interface with the environment and are constantly exposed to antigens of microbial origin. Moreover, the intestinal mucosa is exposed to antigens derived from food and the respiratory mucosa is exposed to inhaled antigens. Therefore, the mucosal lymphoid tissues fulfill several functions necessary for immunological protection.

The presence of organized collections of lymphoid tissues, which have been termed MALT (mucosa-associated lymphoid tissues) is a characteristic of mucosal surfaces. The nodular tissues of GALT (gut-associated lymphoid tissue) and their analogs in bronchus-associated lymphoid tissue (BALT) consist of lymphoid follicles found singly in the oral mucosa, intestine and bronchi or in clusters in the nose-associated lymphoid tissue of mice and rats and in the tonsils, adenoids, Peyer's patches, appendix. BALT in the rat is localized along the main bronchi, near the bifurcations in all lung lobes.

Malnutrition, and specially protein deficiency, provokes an impairment of cell-mediated immunity, immune responses and secretory antibody responses.

Recent studies from our laboratory in Wistar rats have shown for the first time, the permanent damage that severe protein deprivation at weaning induces in BALT.

In previous works we have shown that an immunomodulator (IM-104) orally administrated during the protein deprivation period promotes cellular differentiation and maturation in GALT and a
good repopulation of gut lamina propria with IgA B cells when rats were refeed with a 20% casein diet. The aim of the present work was to investigate the influence of the immunomodulator RN-301 orally and subcutaneously administered to Wistar rats during the protein deprivation period, in the seeding of BALT with IgA B and T cells after protein refeeding.

Materials and Methods

Animals and Diets: Weaning rats of the Wistar strain (closed colony from the breeding unit kept at the animal facilities of the Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina) of either sex, 21-23 days old, were fed ad libitum a protein free diet until they lost 25% of their initial body weight (36-39 days of age) and afterwards were fed on a 20% casein diet for 21 days (57-60 days old) (R21). Simultaneously, a group of weaning rats were fed a protein-free diet together with the immunomodulator RN-301 dissolved in the drinking water so that animals received 1 mL/Kg of body weight daily until they lost 25% of their initial body weight (36-39 days of age), and another group of weaning rats were fed a protein free diet and received the same amount of the immunomodulator RN-301 by subcutaneous injection at days 1-3-7 during the same protein free diet period (36-39 days of age); both groups of rats were refeed a 20% casein diet for 21 days (57-60 days old) (RN-R21 and RN-R21SC respectively).

Age-matched well nourished control group receiving stock diet (Cargill, Argentina, 24.6% protein) since weaning was run simultaneously (57-60 days of age) (C).

During all the experiments the animals were exposed to a 12 hour light-darkness cycle, room temperature was kept at 21°C ± 1.0.

Water and diets were offered ad libitum.

Experimental isocaloric diets were prepared as previously reported according to Farina et al.: to a basal concentrated diet containing all the essential nutrients – as recommended by the American Institute of Nutrition – except protein, casein was incorporated to provide 20% protein and then filled up to 100 g by adding dextrin. In the protein free diet casein was omitted and replaced by dextrin.

Immunomodulator RN-301: Contains per mL 0.93 µg of lipopolysaccharide (LPS) from E. coli and 0.168 g of membranous and ribosomal fractions from Propionibacterium acnes expressed as ribose in suspension (Neomar SRL).

Tissue Sections: Experiments were performed using 5 animals. Rats were sacrificed after 4 hours fasting, and the lower respiratory tract was removed, placed in ethanol 4°C in order to be processed by Sainte Marie's technique. Briefly, tissues were fixed in 95% ethanol pre-cooled at 4°C, dehydrated in 4 changes of pre-cooled absolute ethanol, cleared by passing through 3 consecutive baths of pre-cooled xylen and embedded in paraffin at 56°C. Sectioning was carried out as usual, and tissue sections (4-5 µm thick) were placed on glass slides. Paraffin was removed by gently motioning the slides in 2 successive baths of xylene, which was removed in 3 baths of saline solution (0.9% w/v in distilled water).

Tissue sections of the lower respiratory tract were studied with an Olympus fluorescence microscope. Number of cells per 15 fields (mean ± SE) in the lamina propria of BALT were recorded in each tissue section. All slides were reviewed by two blinded investigators. B and T cells were labelled by an indirect immunofluorescence technique with the following antibodies: 1) B cells in tissue sections were labelled with IgG affinity purified goat against rat IgG (μ chain specific) (Organon Teknika Corporation) followed by fluorescein conjugated F(ab')2 fraction of rabbit against goat IgG (H and L) (Organon Teknika Corporation); 2) T cells in tissue sections were labelled with the xenogeneic monoclonal antibody (mAb OX19) against rat CD5 antigen expressed on all thymocytes and peripheral T cells but not on B cells, macrophages or NK cells (Accurate Chemical & Scientific Corp., Westbury, NY); followed by the fluorescein conjugated goat F(ab')2 fragment to mouse IgG (whole molecule) (Organon Teknika Corporation).

Results are expressed as number of cells in 15 fields ± SE, and 2 or 3 sections per animal were recorded.

Statistical analysis was performed by using analysis of variance (ANOVA) and Tukey-Kramer, taking p < 0.05 as significant.

Results

Tissue section study of each experimental group compared to the control showed no variation in BALT localization between them. However, serial BALB tissue section study points out a significant decrease in the size and number of organized collection of lymphoid tissue in the R21 group when compared to the control C. This observation was accompanied by a decrease in the BALT lamina propria cellularity (Figures 2 vs 1). When tissue sections from rats treated with the immunomodulator given by the oral route (RN-R21) were compared to rats receiving only 20% casein diet during 21 days (R21), an increase in lamina propria cellularity was observed (Figure 3 vs 2) although it did not reach the cellularity found in control rats (Figure 3 vs 1). However, the quantity and size of organized collection of lymphoid
tissue in RN-R21 (rats receiving immunomodulator RN-301) could not reach the one found in rats receiving stock diet (C, control animals).

Table 1 describes the number of IgA+B and CD5+T cells found in the BALT lamina propria from protein refed, protein refed treated with RN-301 and control rats. The number of IgA B cells was significantly diminished in the protein refed rats (R21) as well as in the protein refed rats subcutaneously treated with RN-301 (RN-R21 SC) when compared to the control (RN-R21 SC vs R21 vs C, p < 0.001). However, when rats were orally treated with the immunomodulator RN-301 in the drinking water during the protein deprivation period, the number of IgA B cells in RN-R21 group attained control number and was significantly different from R21 group (without immunomodulator) (RN-R21 vs R21, p < 0.001). The number of CD5+ T cells detected with the monoclonal antibody OX19 followed the behavior described above for IgA B cells (RN-R21 SC vs R21 vs C, p < 0.001 and RN-R21 vs R21, p < 0.001).
Discussion

In the present report we found that the oral treatment with the Immunomodulator RN-301 during the protein deprivation period leads to a recovery from the immunodeficient state increasing the seeding of BALT with IgA B and T cells after protein refeeding.

The lipopolysaccharide (LPS), a component of the RN-301, is an endotoxin of the external membrane of Gram negative bacteria. The LPS has been used to induce antibody response in the absence of helper T cells and besides other properties, it is also a mitogen for B cells12-14. Studies in a number of laboratories have shown that IgA antibodies have been induced to LPS and capsular polysaccharides15. Moreover, work showing the appearance of IgA anti Salmonella LPS mAbs and protection against an oral Salmonella challenge has been described16. LPS is also very important in the regulation of B cell terminal differentiation, increasing the production of IL-4, IL-5 and IL-6 as it has been observed in nude mice17. A recent paper ascertained that bacterial crude extract or bacterial ribosomes are recognized similarly by mucosal B cells. Ribosomes appear to trigger stimulation of Peyer's patches and the subsequent spreading of sensitized B cells towards all mucosal areas18.

The efficiency of RN-301 orally administered may be explained as follows: the severe protein deprivation provokes an arrest in B and T cell differentiation19, 20. The LPS as well as the ribosomal fraction from Propionibacterium acnes - contained in the immunomodulator RN-301 - stimulates the proliferation of the small resting lymphocytes found in the Peyer's patches, and their subsequent migration to mucosal associated lymphoid tissue such as BALT in the present study. It is known that the small B resting lymphocytes in the Peyer's patches that express IL-4R are ready to enter the cell cycle and to continue from G1 to S arriving to M and that resting TH cells express IL-2R\beta but when entering in G1 they express sIL-6R and secrete IL-621. Moreover, IgA B cell terminal differentiation or maturation into IgA plasma cells needs IL-622 and the LPS also has the property of stimulating IL-6 production22, 23. Therefore, we think that the significant increase of IgA B and T cells in the BALT lamina propria of rats treated orally with the immunomodulator RN-301 during the protein deprivation period, is due to its LPS and ribosomal fraction from Propionibacterium acnes content.

Our results demonstrate the importance of the oral route over the subcutaneous one. Only, the oral administration of RN-301 allows BALT lamina propria repopulation with large quantities of IgA+ B and CD5+ T cells. The immunomodulator RN-301 administered subcutaneously is not effective at the dose and form utilized. This observation is in agreement with previously published papers where the oral delivery of antigens, vaccines or immunomodulators is essential for the induction of mucosal immune responses at different sites24-28.

Resumen

Efecto del inmunomodulador RN-301 sobre el tejido linfóide asociado a bronquios (BALT) en ratas que al destete sufrieron depilación proteica severa

Trabajos previos demostraron que la depilación proteica severa al destete en ratas Wistar provoca alteraciones permanentes en las poblaciones celulares B IgA+ y T del intestino delgado y del tejido linfóideo asociado a intestino (GALT) que son revertidas por el inmunomodulador IM-104; estos efectos persisten aún después de la recuperación nutricional con la administración de caseína al 20% durante 21 días. En el presente trabajo investigamos la influencia del inmunomodulador RN-301 (similar al IM-104) administrado por vía oral o subcutánea durante el período de depilación proteica, sobre la repoblación de la lámina propia (LP) del BALT (tejido linfóideo asociado a bronquios). El RN-301 contiene LPS de Escherichia coli y fracciones membranosas y ribosomales de Propionibacterium acnes. Los cortes de tejido del tracto respiratorio bajo fueron estudiados por inmunohistoquímica. El RN-301 administrado por vía oral favorece en forma estadísticamente significativa la repoblación de la LP del BALT con células de B IgA+ y T CD5+ (p < 0,001). El RN-301 administrado por vía subcutánea no favorece la repoblación de la LP del BALT. La fracción ribosomal de Propionibacterium acnes asociada con el LPS de E. coli constituyentes del inmunomodulador RN-301 administrado por vía oral escatrarían pequeños linfocitos en reposo del GALT estimulando su proliferación y favoreciendo su migración hacia el BALT.

Acknowledgements: The authors thank the Department of Nutrition for the use of animal facilities, Mrs. Lia
C. de Calafat for diet preparations and A. Bellouard Uriburu for technical assistance. The immunomodulator RN-301 was kindly provided by NEOMAR SRL. This investigation was supported by CONICET and UBA. This paper is part of the Thesis of María Gabriela Márquez.

References

15. Abraham E, Robinson A. Oral immunization with bacterial polysaccharide and adjuvant enhances antigen-specific pulmonary secretory antibody re-

17. Kawamish H, Joseph K. IL-4, IL-5 and IL-6-mediated regulation of immunoglobulin (Ig) heavy chain class switching and Ig production by gut-associated lymphoid tissue (GALT) B cells from athymic nude (nu/nu) mice. Immunological Investigation 1991; 20(7): 605-21.

